Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2015, Vol. 10 Issue (5): 106103   https://doi.org/10.1007/s11467-015-0487-8
  本期目录
The Boson peak in confined water: An experimental investigation of the liquid-liquid phase transition hypothesis
Francesco Mallamace1,2,3(),Carmelo Corsaro2,3,Domenico Mallamace4,Zhe Wang1,Sow-Hsin Chen1,*()
1. Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
2. Dipartimento di Fisica e Scienze della Terra, Universit`a di Messina, I-98166, Messina, Italy
3. Consiglio Nazionale delle Ricerche-IPCF Messina, I-98166, Messina, Italy
4. Dipartimento di Scienze dell’Ambiente, della Sicurezza, del Territorio, degli Alimentie, e della Salute, Università di Messina Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy
 全文: PDF(466 KB)  
Abstract

The Boson peak (BP) of deeply cooled confined water is studied by using inelastic neutron scattering (INS) in a large interval of the (P, T) phase plane. By taking into account the different behavior of such a collective vibrational mode in both strong and fragile glasses as well as in glass-forming materials, we were able to determine the Widom line that characterizes supercooled bulk water within the frame of the liquid-liquid phase transition (LLPT) hypothesis. The peak frequency and width of the BP correlated with the water polymorphism of the LLPT scenario, allowing us to distinguish the “low-density liquid” (LDL) and “high-density liquid” (HDL) phases in deeply cooled bulk water.Moreover, the BP properties afford a further confirmation of theWidom line temperature TW as the (P, T) locus in which the local structure of water transforms from a predominately LDL form to a predominately HDL form.

Key wordssupercooled water    liquid-liquid phase transition (LLPT)    inelastic neutron scattering
收稿日期: 2015-07-06      出版日期: 2015-10-26
Corresponding Author(s): Sow-Hsin Chen   
 引用本文:   
. [J]. Frontiers of Physics, 2015, 10(5): 106103.
Francesco Mallamace,Carmelo Corsaro,Domenico Mallamace,Zhe Wang,Sow-Hsin Chen. The Boson peak in confined water: An experimental investigation of the liquid-liquid phase transition hypothesis. Front. Phys. , 2015, 10(5): 106103.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-015-0487-8
https://academic.hep.com.cn/fop/CN/Y2015/V10/I5/106103
1 D. Kennedy, 125th Anniversary Issue: 125 outstanding problems in all of science: What is the nature of the glassy state, Science 309, 83 (2005)
2 M. D. Ediger, Spatially heterogeneous dynamics in supercooled liquids, Annu. Rev. Phys. Chem. 51(1), 99 (2000)
https://doi.org/10.1146/annurev.physchem.51.1.99
3 M. Goldstein, Viscous liquids and the glass transition: A potential energy barrier picture, J. Chem. Phys. 51(9), 3728 (1969)
https://doi.org/10.1063/1.1672587
4 F. H. Stillinger, A topographic view of supercooled liquids and glass formation, Science 267(5206), 1935 (1995)
https://doi.org/10.1126/science.267.5206.1935
5 A. Laio and M. Parrinello, Escaping free-energy minima, Proc. Natl. Acad. Sci. USA 99(20), 12562 (2002)
https://doi.org/10.1073/pnas.202427399
6 F. Mallamace, C. Branca, C. Corsaro, N. Leone, J. Spooren, S. H. Chen, and H. E. Stanley, Transport properties of glassforming liquids suggest that dynamic crossover temperature is as important as the glass transition temperature, Proc. Natl. Acad. Sci. USA 107(52), 22457 (2010)
https://doi.org/10.1073/pnas.1015340107
7 S. Yip and M. P. Short, Multiscale materials modeling at the mesoscale, Nat. Mater. 12(9), 774 (2013)
https://doi.org/10.1038/nmat3746
8 C. A. Angell, Formation of glasses from liquids and biopolymers, Science 267(5206), 1924 (1995)
https://doi.org/10.1126/science.267.5206.1924
9 J. C. Martinez-Garcia, J. Martinez-Garcia, S. J. Rzoska, and J. Hulliger, The new insight into dynamic crossover in glass forming liquids from the apparent enthalpy analysis, J. Chem. Phys. 137(6), 064501 (2012)
https://doi.org/10.1063/1.4739750
10 Advances in Chemical Physics, Water Polymorphism, edited by H. E. Stanley, series editor S. A. Rice, Wiley, New York, 2013
11 F. Mallamace, P. Baglioni, C. Corsaro, J. Spooren, H. E. Stanley, and S.H. Chen, Transport properties of supercooled confined water, Riv. Nuovo Cim. 34, 253 (2011)
12 F. Mallamace, C. Corsaro, D. Mallamace, C. Vasi, and H. E. Stanley, The thermodynam-ical response functions and the origin of the anomalous behavior of liquid water, Farad. Disc. 167, 95 (2013)
13 F. Mallamace, C. Corsaro, and H. E. Stanley, A singular thermodynamically consistent temperature at the origin of the anomalous behavior of liquid water, Sci. Rep. 2, 993 (2012)
https://doi.org/10.1038/srep00993
14 O. Mishima, Relationship between melting and amorphization of ice, Nature 384(6609), 546 (1996)
https://doi.org/10.1038/384546a0
15 F. Mallamace, M. Broccio, C. Corsaro, A. Faraone, D. Majolino, V. Venuti, L. Liu, C. Y. Mou, and S. H. Chen, Evidence of the existence of the low-density liquid phase in supercooled, confined water, Proc. Natl. Acad. Sci. USA 104(2), 424 (2007)
https://doi.org/10.1073/pnas.0607138104
16 S. H. Chen, F. Mallamace, C. Y. Mou, M. Broccio, C. Corsaro, A. Faraone, and L. Liu, The violation of the Stokes-Einstein relation in supercooled water, Proc. Natl. Acad. Sci. USA 103(35), 12974 (2006)
https://doi.org/10.1073/pnas.0603253103
17 L. Xu, F. Mallamace, Z. Yan, F. W. Starr, S. V. Buldyrev, and H. E. Stanley, Appearance of a fractional Stokes Einstein relation in water and a structural interpretation of its onset, Nat. Phys. 5(8), 565 (2009)
https://doi.org/10.1038/nphys1328
18 P. H. Poole, F. Sciortino, U. Essmann, and U. H. E. Stanley, Phase behaviour of metastable water, Nature 360(6402), 324 (1992)
https://doi.org/10.1038/360324a0
19 L. Liu, S. H. Chen, A. Faraone, C. Yen, and C. Y. Mou, Pressure dependence of fragile-to-strong transition and a possible second critical point in supercooled confined water, Phys. Rev. Lett. 95(11), 117802 (2005)
https://doi.org/10.1103/PhysRevLett.95.117802
20 L. Xu, P. Kumar, S. V. Buldyrev, S.H. Chen, P. H. Poole, F. Sciortino, and H. E. Stanley, Relation between the Widom line and the dynamic crossover in systems with a liquid−liquid phase transition, Proc. Natl. Acad. Sci. USA 102(46), 16558 (2005)
https://doi.org/10.1073/pnas.0507870102
21 J. C. Mauro, Y. Yue, A. J. Ellison, P. K. Gupta, and D. C. Allan, Viscosity of glass-forming liquids, Proc. Natl. Acad. Sci. USA 106(47), 19780 (2009)
https://doi.org/10.1073/pnas.0911705106
22 F. Mallamace, C. Corsaro, H. E. Stanley, and S. H. Chen, The role of the dynamic crossover temperature and the arrest in glass-forming fluids, Eur. Phys. J. E 34(9), 94 (2011)
https://doi.org/10.1140/epje/i2011-11094-7
23 T. Hecksher, A. I. Nielsen, N. B. Olsen, and J. C. Dyre, Little evidence for dynamic divergences in ultraviscous molecular liquids, Nat. Phys. 4(9), 737 (2008)
https://doi.org/10.1038/nphys1033
24 M. D. Ediger, C. A. Angell, and S. R. Nagel, Supercooled liquids and glasses, J. Phys. Chem. 100(31), 13200 (1996)
https://doi.org/10.1021/jp953538d
25 M. D. Ediger and P. Harrowell, Perspective: Supercooled liquids and glasses, J. Chem. Phys. 137(8), 080901 (2012)
https://doi.org/10.1063/1.4747326
26 V. Lubchenko and P. Wolynes, Theory of structural glasses and supercooled liquids, Annu. Rev. Phys. Chem. 58(1), 235 (2007)
https://doi.org/10.1146/annurev.physchem.58.032806.104653
27 B. Frick and D. Richter, The microscopic basis of the glass transition in polymers from neutron scattering studies, Science 267(5206), 1939 (1995)
https://doi.org/10.1126/science.267.5206.1939
28 V. N. Novikov and A. P. Sokolov, A correlation between lowenergy vibrational spectra and first sharp diffraction peak in chalcogenide glasses, Solid State Commun. 77(3), 243 (1991)
https://doi.org/10.1016/0038-1098(91)90341-R
29 V. K. Malinovsky, V. N. Novikov, P. P. Parshin, A. P. Sokolov, and M. G. Zemlyanov, Universal form of the lowenergy (2 to 10 meV) vibrational spectrum of glasses, Europhys. Lett. 11(1), 43 (1990)
https://doi.org/10.1209/0295-5075/11/1/008
30 A. P. Sokolov, U. Buchenau, W. Steffen, B. Frick, and A. Wischnewski, Comparison of Raman- and neutronscattering data for glass-forming systems, Phys. Rev. B 52(14), R9815 (1995)
https://doi.org/10.1103/PhysRevB.52.R9815
31 J. Wuttke, J. Hernandez, G. Li, G. Coddens, H. Z. Cummins, F. Fujara, W. Petry, and H. Sillescu, Neutron and light scattering study of supercooled glycerol, Phys. Rev. Lett. 72(19), 3052 (1994)
https://doi.org/10.1103/PhysRevLett.72.3052
32 B. Hehlen, E. Courtens, R. Vacher, A. Yamanaka, M. Kataoka, and K. Inoue, Hyper-Raman scattering observation of the Boson peak in vitreous silica, Phys. Rev. Lett. 84(23), 5355 (2000)
https://doi.org/10.1103/PhysRevLett.84.5355
33 J. Wuttke, M. Kiebel, E. Bartsch, F. Fujara, W. Petry, and H. Sillescu, Relaxation and phonons in viscous and glassy orthoterphenyl by neutron scattering, Z. Phys. B 91(3), 357 (1993)
https://doi.org/10.1007/BF01344065
34 S. Grigera, V. Mart’ın-Mayor, G. Parisi, and P. Verrocchio, Vibrational spectrum of topologically disordered systems, Phys. Rev. Lett. 87(8), 085502 (2001)
https://doi.org/10.1103/PhysRevLett.87.085502
35 A. P. Sokolov, R. Calemczuk, B. Salce, A. Kisliuk, D. Quitmann, and E. Duval, Low-temperature anomalies in strong and fragile glass formers, Phys. Rev. Lett. 78(12), 2405 (1997)
https://doi.org/10.1103/PhysRevLett.78.2405
36 H. Shintani and H. Tanaka, Universal link between the boson peak and transverse phonons in glass, Nat. Mater. 7(11), 870 (2008)
https://doi.org/10.1038/nmat2293
37 P. Kumar, K. T. Wikfeldt, D. Schlesinger, L. G. M. Pettersson, and H. E. Stanley, The Boson peak in supercooled water, Sci. Rep. 3, 1980 (2013)
https://doi.org/10.1038/srep01980
38 S. H. Chen, Y. Zhang, M. Lagi, S. H. Chong, P. Baglioni, and F. Mallamace, Evidence of dynamic crossover phenomena in water and other glass-forming liquids: experiments, MD simulations and theory, J. Phys.: Condens. Matter 21(50), 504102 (2009)
https://doi.org/10.1088/0953-8984/21/50/504102
39 Z. Wang, K. H. Liu, P. Le, M. Li, W. S. Chiang, J. B. Leão, J. R. D. Copley, M. Tyagi, A. Podlesnyak, A. I. Kolesnikov, C.Y. Mou, and S. H. Chen, Boson peak in deeply cooled confined water: A possible way to explore the existence of the liquid-to-liquid transition in water, Phys. Rev. Lett. 112(23), 237802 (2014)
https://doi.org/10.1103/PhysRevLett.112.237802
40 A. Cupane, M. Fomina, and G. Schirò, The boson peak of deeply cooled confined water reveals the existence of a low-temperature liquid-liquid crossover, J. Chem. Phys. 141, 18C510 (2014)
https://doi.org/10.1063/1.4895793
41 K. T. Wikfeldt, A. Nilsson, and L. G. M. Pettersson, Spatially inhomogeneous bimodal inherent structure in simulated liquid water, Phys. Chem. Chem. Phys. 13(44), 19918 (2011)
https://doi.org/10.1039/c1cp22076d
42 L. Hong, B. Begen, A. Kisliuk, C. Alba-Simionesco, V. N. Novikov, and A. P. Sokolov, Pressure and density dependence of the Boson peak in polymers, Phys. Rev. B 78(13), 134201 (2008)
https://doi.org/10.1103/PhysRevB.78.134201
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed