Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2015, Vol. 10 Issue (5): 106101   https://doi.org/10.1007/s11467-015-0504-y
  本期目录
Role of confinement in water solidification under electric fields
Guo-Xi Nie1,Yu Wang2,*(),Ji-Ping Huang3,*()
1. Department of Physics, State Key Laboratory of Surface Physics, and Collaborative Innovation Center of Advanced Microstructures, Fudan University, Shanghai 200433, China
2. Department of Physics, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
3. Department of Physics, State Key Laboratory of Surface Physics, and Collaborative Innovation Center of Advanced Microstructures, Fudan University, Shanghai 200433, China
 全文: PDF(504 KB)  
Abstract

In contrast to the common belief that confinement promotes water solidification, here we show by molecular dynamics simulations that confinement can impede water solidification under electric fields. The behavior is evidenced by the increase in critical electric field strength for water solidification as the confinement progresses. We also show that the solidification occurs more easily with a parallel field than a perpendicular one. We understand and generalize these results by developing an energy theory incorporated with the anisotropic Clausius−Mossotti equation. It is revealed that the underlying mechanism lies in the confinement effect on molecules’ electro-orientations. Thus, it becomes possible to achieve electro-freezing (i.e., room-temperature ice) by choosing both confinement and electric fields appropriately.

Key wordsmolecular dynamics simulations    water    electric fields    confinement
收稿日期: 2015-07-15      出版日期: 2015-10-26
Corresponding Author(s): Yu Wang,Ji-Ping Huang   
 引用本文:   
. [J]. Frontiers of Physics, 2015, 10(5): 106101.
Guo-Xi Nie,Yu Wang,Ji-Ping Huang. Role of confinement in water solidification under electric fields. Front. Phys. , 2015, 10(5): 106101.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-015-0504-y
https://academic.hep.com.cn/fop/CN/Y2015/V10/I5/106101
1 A. Cupane, M. Fomina, I. Piazza, J. Peters, and G. Schiro, Experimental evidence for a liquid-liquid crossover in deeply cooled confined water, Phys. Rev. Lett. 113(21), 215701 (2014)
https://doi.org/10.1103/PhysRevLett.113.215701
2 A. G. Marín, O. R. Enriquez, P. Brunet, P. Colinet, and J. H. Snoeijer, Universality of tip singularity formation in freezing water drops, Phys. Rev. Lett. 113(5), 054301 (2014)
https://doi.org/10.1103/PhysRevLett.113.054301
3 Z. Wang, K. H. Liu, P. S. Le, M. D. Li, W. S. Chiang, J. B. Leão, J. R. D. Copley, M. Tyagi, A. Podlesnyak, A. I. Kolesnikov, C.Y. Mou, and S. H. Chen, Boson peak in deeply cooled confined water: A possible way to explore the existence of the liquid-to-liquid transition in water, Phys. Rev. Lett. 112(23), 237802 (2014)
https://doi.org/10.1103/PhysRevLett.112.237802
4 W. J. Cho, J. Kim, J. Lee, T. Keyes, J. E. Straub, and K. S. Kim, Limit of metastability for liquid and vapor phases of water, Phys. Rev. Lett. 112(15), 157802 (2014)
https://doi.org/10.1103/PhysRevLett.112.157802
5 K. Raghavan, K. Foster, K. Motakabbir, and M. Berkowitz, Structure and dynamics of water at the pt(111) interface: Molecular dynamics study, J. Chem. Phys. 94(3), 2110 (1991)
https://doi.org/10.1063/1.459934
6 P. A. Thompson, G. S. Grest, and M. O. Robbins, Phase transitions and universal dynamics in confined films, Phys. Rev. Lett. 68(23), 3448 (1992)
https://doi.org/10.1103/PhysRevLett.68.3448
7 R. Zangi and A. E. Mark, Monolayer ice, Phys. Rev. Lett. 91(2), 025502 (2003)
https://doi.org/10.1103/PhysRevLett.91.025502
8 R. Zangi and A. E. Mark, Bilayer ice and alternate liquid phases of confined water, J. Chem. Phys. 119(3), 1694 (2003)
https://doi.org/10.1063/1.1580101
9 K. Koga and H. Tanaka, Phase diagram of water between hydrophobic surfaces, J. Chem. Phys. 122(10), 104711 (2005)
https://doi.org/10.1063/1.1861879
10 K. B. Jinesh and J. W. M. Frenken, Experimental evidence for ice formation at room temperature, Phys. Rev. Lett. 101(3), 036101 (2008)
https://doi.org/10.1103/PhysRevLett.101.036101
11 I. M. Svishchev and P. G. Kusalik, Crystallization of liquid water in a molecular dynamics simulation, Phys. Rev. Lett. 73(7), 975 (1994)
https://doi.org/10.1103/PhysRevLett.73.975
12 X. Xia and M. L. Berkowitz, Electric-field induced restructuring of water at a platinum-water interface: A molecular dynamics computer simulation, Phys. Rev. Lett. 74(16), 3193 (1995)
https://doi.org/10.1103/PhysRevLett.74.3193
13 X. Xia, L. Perera, U. Essmann, and M. L. Berkowitz, The structure of water at platinum/water interfaces molecular dynamics computer simulations, Surf. Sci. 335(1−3), 401 (1995)
https://doi.org/10.1016/0039-6028(95)00449-1
14 I. M. Svishchev and P. G. Kusalik, Electrofreezing of liquid water: A microscopic perspective, J. Am. Chem. Soc. 118(3), 649 (1996)
https://doi.org/10.1021/ja951624l
15 I. Borzsák and P. T. Cummings, Electrofreezing of water in molecular dynamics simulation accelerated by oscillatory shear, Phys. Rev. E 56(6), R6279 (1997)
https://doi.org/10.1103/PhysRevE.56.R6279
16 G. Sutmann, Structure formation and dynamics of water in strong external electric fields, J. Electroanal. Chem. 450(2), 289 (1998)
https://doi.org/10.1016/S0022-0728(97)00649-9
17 R. Zangi and A. E. Mark, Electrofreezing of confined water, J. Chem. Phys. 120(15), 7123 (2004)
https://doi.org/10.1063/1.1687315
18 X. Hu, N. Elghobashi-Meinhardt, D. Gembris, and J. C. Smith, Response of water to electric fields at temperatures below the glass transition: A molecular dynamics analysis, J. Chem. Phys. 135(13), 134507 (2011)
https://doi.org/10.1063/1.3643077
19 H. Qiu and W. L. Guo, Electromelting of confined monolayer ice, Phys. Rev. Lett. 110(19), 195701 (2013)
https://doi.org/10.1103/PhysRevLett.110.195701
20 E. M. Choi, Y. H. Yoon, S. Lee, and H. Kang, Freezing transition of interfacial water at room temperature under electric fields, Phys. Rev. Lett. 95(8), 085701 (2005)
https://doi.org/10.1103/PhysRevLett.95.085701
21 D. L. Scovell, T. D. Pinkerton, V. K. Medvedev, and E. M. Stuve, Phase transitions in vapordeposited water under the influence of high surface electric fields, Surf. Sci. 457(3), 365 (2000)
https://doi.org/10.1016/S0039-6028(00)00383-6
22 G. Chen, P. Tan, S. Chen, J. P. Huang, W. Wen, and L. Xu, Coalescence of pickering emulsion droplets induced by an electric field, Phys. Rev. Lett. 110(6), 064502 (2013)
https://doi.org/10.1103/PhysRevLett.110.064502
23 P. Kim, T. S. Wong, J. Alvarenga, M. J. Kreder, W. E. Adorno-Martinez, and J. Aizenberg, Liquid-infused nanostructured surfaces with extreme anti-ice and anti-frost performance, ACS Nano 6(8), 6569 (2012)
https://doi.org/10.1021/nn302310q
24 M. Lee, C. Yim, and S. Jeon, Communication: Anti-icing characteristics of superhydrophobic surfaces investigated by quartz crystal microresonators, J. Chem. Phys. 142(4), 041102 (2015)
https://doi.org/10.1063/1.4906510
25 A. Loncaric, K. Dugalic, I. Mihaljevic, L. Jakobek, and V. Pilizota, Effects of sugar addition on total polyphenol content and antioxidant activity of frozen and freeze-dried apple puree, J. Agric. Food Chem. 62(7), 1674 (2014)
https://doi.org/10.1021/jf405003u
26 T. Inada, T. Koyama, F. Goto, and T. Seto, Ice nucleation in emulsified aqueous solutions of antifreeze protein type III and poly(vinyl alcohol), J. Phys. Chem. B 115(24), 7914 (2011)
https://doi.org/10.1021/jp111745v
27 D. Murakami and K. Yasuoka, Molecular dynamics simulation of quasi-two-dimensional water clusters on ice nucleation protein, J. Chem. Phys. 137(5), 054303 (2012)
https://doi.org/10.1063/1.4739299
28 K. Meister, S. Ebbinghaus, Y. Xu, J. G. Duman, A. DeVries, M. Gruebele, D. M. Leitner, and M. Havenith, Long-range protein-water dynamics in hyperactive insect antifreeze protein, Proc. Natl. Acad. Sci. USA 110(5), 1617 (2013)
https://doi.org/10.1073/pnas.1214911110
29 P. A. Thompson and M. O. Robbins, Origin of stick-slip motion in boundary lubrication, Science 250(4982), 792 (1990)
https://doi.org/10.1126/science.250.4982.792
30 M. O. Robbins and P. A. Thompson, Critical velocity of stick-slip motion, Science 253(5022), 916 (1991)
https://doi.org/10.1126/science.253.5022.916
31 J. N. Israelachvili, P. M. McGuiggan, and A. M. Homola, Dynamic properties of molecularly thin liquid films, Science 240(4849), 189 (1988)
https://doi.org/10.1126/science.240.4849.189
32 S. Granick, Motions and relaxations of confined liquids, Science 253(5026), 1374 (1991)
https://doi.org/10.1126/science.253.5026.1374
33 J. Klein and E. Kumacheva, Confinement-induced phase transitions in simple liquids, Science 269(5225), 816 (1995)
https://doi.org/10.1126/science.269.5225.816
34 Z. Y. Qian and G. H. Wei, Electric-field-induced phase transition of confined water nanofilms between two graphene sheets, J. Phys. Chem. A 118(39), 8922 (2014)
https://doi.org/10.1021/jp500989t
35 X. Y. Zhu, Q. Z. Yuan, and Y. P. Zhao, Phase transitions of a water overlayer on charged graphene: from electromelting to electrofreezing, Nanoscale 6(10), 5432 (2014)
https://doi.org/10.1039/c3nr06596k
36 F. Mei, X. Y. Zhou, J. L. Kou, F. M. Wu, C. L.Wang, and H. J. Lu, A transition between bistable ice when coupling electric field and nanoconfinement, J. Chem. Phys. 142(13), 134704 (2015)
https://doi.org/10.1063/1.4916521
37 Y. S. Tu, P. Xiu, R. Z. Wan, J. Hu, R. H. Zhou, and H. P. Fang, Water-mediated signal multiplication with Y-shaped carbon nanotubes, Proc. Natl. Acad. Sci. USA 106(43), 18120 (2009)
https://doi.org/10.1073/pnas.0902676106
38 Y. Wang, Y. J. Zhao, and J. P. Huang, Giant pumping of single-file water molecules in a carbon nanotube, J. Phys. Chem. B 115(45), 13275 (2011)
https://doi.org/10.1021/jp2069557
39 J. Y. Su and H. X. Guo, Control of unidirectional transport of single-file water molecules through carbon nanotubes in an electric field, ACS Nano 5(1), 351 (2011)
https://doi.org/10.1021/nn1014616
40 X. W. Meng and J. P. Huang, Enhanced permeation of single-file water molecules across a noncylindrical nanochannel, Phys. Rev. E 88(1), 014104 (2013)
https://doi.org/10.1103/PhysRevE.88.014104
41 Y. Wang and J. P. Huang, A water-based molecular flip-flop, Eur. Phys. J. Appl. Phys. 68(3), 30403 (2014)
https://doi.org/10.1051/epjap/2014140239
42 R. Zangi, Water confined to a slab geometry: A review of recent computer simulation studies, J. Phys.: Condens. Matter 16(45), S5371 (2004)
https://doi.org/10.1088/0953-8984/16/45/005
43 N. Giovambattista, P. J. Rossky, and P. G. Debenedetti, Phase transitions induced by nanoconfinement in liquid water, Phys. Rev. Lett. 102(5), 050603 (2009)
https://doi.org/10.1103/PhysRevLett.102.050603
44 B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl, GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation, J. Chem. Theory Comput. 4(3), 435 (2008)
https://doi.org/10.1021/ct700301q
45 G. X. Guo, L. Zhang, and Y. Zhang, Molecular dynamics study of the infiltration of lipidwrapping C60 and polyhydroxylated single-walled nanotubes into lipid bilayers, Front. Phys. 10(2), 177 (2015)
https://doi.org/10.1007/s11467-014-0440-2
46 H. J. C. Berendsen, J. R. Grigera, and T. P. Straatsma, The missing term in effective pair potentials, J. Chem. Phys. 91(24), 6269 (1987)
https://doi.org/10.1021/j100308a038
47 G. Hummer, J. C. Rasaiah, and J. P. Noworyta, Water conduction through the hydrophobic channel of a carbon nanotube, Nature 414(6860), 188 (2001)
https://doi.org/10.1038/35102535
48 T. A. Darden, D. M. York, and L. G. Pedersen, Particle mesh Ewald: An N·log(N) method for Ewald sums in large systems, J. Chem. Phys. 98(12), 10089 (1993)
https://doi.org/10.1063/1.464397
49 S. Nosé, A unified formulation of the constant temperature molecular dynamics methods, J. Chem. Phys. 81(1), 511 (1984)
https://doi.org/10.1063/1.447334
50 W. G. Hoover, Canonical dynamics: Equilibrium phasespace distributions, Phys. Rev. A 31(3), 1695 (1985)
https://doi.org/10.1103/PhysRevA.31.1695
51 Z. X. Guo and X. G. Gong, Molecular dynamics studies on the thermal conductivity of single-walled carbon nanotubes, Front. Phys. China 4(3), 389 (2009)
https://doi.org/10.1007/s11467-009-0039-1
52 I. C. Yeh and M. L. Berkowitz, Ewald summation for systems with slab geometry, J. Chem. Phys. 111(7), 3155 (1999)
https://doi.org/10.1063/1.479595
53 C. K. Lo and K. W. Yu, Field-induced structure transformation in electrorheological solids, Phys. Rev. E 64(3), 031501 (2001)
https://doi.org/10.1103/PhysRevE.64.031501
54 J. P. Huang, J. T. K. Wan, C. K. Lo, and K. W. Yu, Nonlinear ac response of anisotropic composites, Phys. Rev. E 64(6), 061505 (2001)
https://doi.org/10.1103/PhysRevE.64.061505
55 G. Wang and J. P. Huang, Nonlinear magnetic susceptibility of ferrofluids, Chem. Phys. Lett. 421(4−6), 544 (2006)
https://doi.org/10.1016/j.cplett.2006.02.010
56 L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of Continuous Media, 2nd Ed., Pergamon, New York, 1984
57 C. Z. Fan and J. P. Huang, Second-harmonic generation with magnetic-field controllabilities, Appl. Phys. Lett. 89(14), 141906 (2006)
https://doi.org/10.1063/1.2356089
58 J. P. Huang and K. W. Yu, Enhanced nonlinear optical responses of materials: Composite effects, Phys. Rep. 431(3), 87 (2006)
https://doi.org/10.1016/j.physrep.2006.05.004
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed