Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2015, Vol. 10 Issue (5): 100306   https://doi.org/10.1007/s11467-015-0505-x
  本期目录
Trapped Bose−Einstein condensates in synthetic magnetic field
Qiang Zhao1,2,Qiang Gu1,*()
1. Department of Physics, University of Science and Technology Beijing, Beijing 100083, China
2. School of Science, North China University of Science and Technology, Tangshan 063009, China
 全文: PDF(290 KB)  
Abstract

The rotational properties of Bose−Einstein condensates in a synthetic magnetic field are studied by numerically solving the Gross−Pitaevskii equation and comparing the results to those of condensates confined in a rotating trap. It appears to be more difficult to add a large angular momentum to condensates spun up by the synthetic magnetic field than by the rotating trap. However, strengthening the repulsive interaction between atoms is an effective and realizable route to overcoming this problem and can at least generate vortex-lattice-like structures. In addition, the validity of the Feynman rule for condensates in the synthetic magnetic field is verified.

Key wordsBose−Einstein condensates    synthetic magnetic field    vortices
收稿日期: 2015-05-17      出版日期: 2015-10-26
Corresponding Author(s): Qiang Gu   
 引用本文:   
. [J]. Frontiers of Physics, 2015, 10(5): 100306.
Qiang Zhao,Qiang Gu. Trapped Bose−Einstein condensates in synthetic magnetic field. Front. Phys. , 2015, 10(5): 100306.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-015-0505-x
https://academic.hep.com.cn/fop/CN/Y2015/V10/I5/100306
1 R. J. Donnelly, Quantum Vortices in Helium II, Cambridge: Cambridge University Press, 1991
2 D. Vollhardt and P. Wölfle, The Superfluid Phases of Helium 3, London: Taylor & Francis, 1990
3 G. E. Volovik, The Universe in a Helium Droplet, Oxford: Clarendon, 2003
4 G. Blatter, M. V. Feigel’man, V. B. Geshkenbein, A. I. Larkin, and V. M. Vinokur, Vortices in high-temperature superconductors, Rev. Mod. Phys. 66(4), 1125 (1994)
https://doi.org/10.1103/RevModPhys.66.1125
5 A. L. Fetter, Rotating trapped Bose−Einstein condensates, Rev. Mod. Phys. 81(2), 647 (2009)
https://doi.org/10.1103/RevModPhys.81.647
6 M. R. Matthews, B. P. Anderson, P. C. Haljan, D. S. Hall, C. E. Wieman, and E. A. Cornell, Vortices in a Bose−Einstein condensate, Phys. Rev. Lett. 83(13), 2498 (1999)
https://doi.org/10.1103/PhysRevLett.83.2498
7 K. W. Madison, F. Chevy, W. Wohlleben, and J. Dalibard, Vortex formation in a stirred Bose−Einstein condensate, Phys. Rev. Lett. 84(5), 806 (2000)
https://doi.org/10.1103/PhysRevLett.84.806
8 F. Chevy, K. W. Madison, and J. Dalibard, Measurement of the angular momentum of a rotating Bose−Einstein condensate, Phys. Rev. Lett. 85(11), 2223 (2000)
https://doi.org/10.1103/PhysRevLett.85.2223
9 C. Raman, J. R. Abo-Shaer, J. M. Vogels, K. Xu, and W. Ketterle, Vortex nucleation in a stirred Bose−Einstein condensate, Phys. Rev. Lett. 87(21), 210402 (2001)
https://doi.org/10.1103/PhysRevLett.87.210402
10 J. R. Abo-Shaeer, C. Raman, J. M. Vogels, and W. Ketterle, Observation of vortex lattices in Bose−Einstein condensates, Science 292(5516), 476 (2001)
https://doi.org/10.1126/science.1060182
11 S.-W. Song, L. Wen, C.-F. Liu, S.-C. Gou, and W.-M. Liu, Ground states, solitons and spin textures in spin-1 Bose− Einstein condensates, Front. Phys. 8(3), 302 (2013)
https://doi.org/10.1007/s11467-013-0350-8
12 V. Bretin, S. Stock, Y. Seurin, and J. Dalibard, Fast rotation of a Bose−Einstein condensate, Phys. Rev. Lett. 92(5), 050403 (2004)
https://doi.org/10.1103/PhysRevLett.92.050403
13 V. Schweikhard, I. Coddington, P. Engels, V. P. Mogendorff, and E. A. Cornell, Rapidly rotating Bose−Einstein condensates in and near the lowest Landau level, Phys. Rev. Lett. 92(4), 040404 (2004)
https://doi.org/10.1103/PhysRevLett.92.040404
14 R. P. Feynman, Application of Quantum Mechanics to Liquid Helium, Amsterdam: North-Holland, 1955
15 M. Tsubota, K. Kasamatsu, and M. Ueda, Vortex lattice formation in a rotating Bose−Einstein condensate, Phys. Rev. A 65(2), 023603 (2002)
https://doi.org/10.1103/PhysRevA.65.023603
16 K. Kasamatsu, M. Tsubota, and M. Ueda, Nonlinear dynamics of vortex lattice formation in a rotating Bose−Einstein condensate, Phys. Rev. A 67(3), 033610 (2003)
https://doi.org/10.1103/PhysRevA.67.033610
17 D. L. Feder and C. W. Clark, Superfluid-to-solid crossover in a rotating Bose−Einstein condensate, Phys. Rev. Lett. 87(19), 190401 (2001)
https://doi.org/10.1103/PhysRevLett.87.190401
18 P. C. Haljan, I. Coddington, P. Engels, and E. A. Cornell, Driving Bose−Einstein-condensate vorticity with a rotating normal cloud, Phys. Rev. Lett. 87(21), 210403 (2001)
https://doi.org/10.1103/PhysRevLett.87.210403
19 Y.-J. Lin, R. L. Compton, A. R. Perry, W. D. Phillips, J. V. Porto, and I. B. Spielman, Bose−Einstein condensate in a uniform light-induced vector potential, Phys. Rev. Lett. 102(13), 130401 (2009)
https://doi.org/10.1103/PhysRevLett.102.130401
20 Y.-J. Lin, R. L. Compton, K. Jiménez-García, J. V. Porto, and I. B. Spielman, Synthetic magnetic fields for ultracold neutral atoms, Nature 462(7273), 628 (2009)
https://doi.org/10.1038/nature08609
21 L. B. Taylor, R. M. W. van Bijnen, D. H. J. O’Dell, N. G. Parker, S. J. J. M. F. Kokkelmans, and A. M. Martin, Synthetic magnetohydrodynamics in Bose−Einstein condensates and routes to vortex nucleation, Phys. Rev. A 84(2), 021604(R) (2011)
22 M. Aidelsburger, M. Atala, S. Nascimbène, S. Trotzky, Y.-A. Chen, and I. Bloch, Experimental realization of strong effective magnetic fields in an optical lattice, Phys . Rev. Lett. 107(25), 255301 (2011)
https://doi.org/10.1103/PhysRevLett.107.255301
23 Y. Nakano, K. Kasamatsu, and T. Matsui, Finitetemperature phase structures of hard-core bosons in an optical lattice with an effective magnetic field, Phys. Rev. A 85(2), 023622 (2012)
https://doi.org/10.1103/PhysRevA.85.023622
24 J. Xu and Q. Gu, Berezinskii−Kosterlitz−Thouless transition of two-dimensional Bose gases in a synthetic magnetic field, Phys. Rev. A 85(4), 043608 (2012)
https://doi.org/10.1103/PhysRevA.85.043608
25 A. Celi, P. Massignan, J. Ruseckas, N. Goldman, I. B. Spielman, G. Juzeliūnas, and M. Lewenstein, Synthetic gauge fields in synthetic dimensions, Phys. Rev. Lett. 112(4), 043001 (2014)
https://doi.org/10.1103/PhysRevLett.112.043001
26 C. E. Creffield and F. Sols, Generation of uniform synthetic magnetic fields by split driving of an optical lattice, Phys. Rev. A 90(2), 023636 (2014)
https://doi.org/10.1103/PhysRevA.90.023636
27 J.-H. Fan, Q. Gu, and W. Guo, Thermodynamics of charged ideal Bose gases in a trap under a magnetic field, Chin. Phys. Lett. 28(6), 060306 (2011)
https://doi.org/10.1088/0256-307X/28/6/060306
28 Y. Li and Q. Gu, Thermodynamic properties of rotating trapped ideal Bose gases, Phys. Lett. A 378(18−19), 1233 (2014)
https://doi.org/10.1016/j.physleta.2014.02.040
29 W. Bao, I.-L. Chern, and F. Y. Lim, Efficient and spectrally accurate numerical methods for computing ground and first excited states in Bose−Einstein condensates, J. Comp. Phys. 219(2), 836 (2006)
https://doi.org/10.1016/j.jcp.2006.04.019
30 S. Sinha and Y. Castin, Dynamic Instability of a rotating Bose−Einstein condensate, Phys. Rev. Lett. 87(19), 190402 (2001)
https://doi.org/10.1103/PhysRevLett.87.190402
31 Y. Zhao, J. An, and C.-D. Gong, Vortex competition in a rotating two-component dipolar Bose−Einstein condensate, Phys. Rev. A 87(1), 013605 (2013)
https://doi.org/10.1103/PhysRevA.87.013605
32 G. Thalhammer, G. Barontini, L. De Sarlo, J. Catani, F. Minardi, and M. Inguscio, Double species Bose−Einstein condensate with tunable interspecies interactions, Phys. Rev. Lett. 100(21), 210402 (2008)
https://doi.org/10.1103/PhysRevLett.100.210402
33 C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, Feshbach resonances in ultracold gases, Rev. Mod. Phys. 82(2), 1225 (2010)
https://doi.org/10.1103/RevModPhys.82.1225
34 L. Santos, G. V. Shlyapnikov, P. Zoller, and M. Lewenstein, Bose−Einstein condensation in trapped dipolar gases, Phys. Rev. Lett. 85(9), 1791 (2000)
https://doi.org/10.1103/PhysRevLett.85.1791
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed