Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2015, Vol. 10 Issue (5): 109501   https://doi.org/10.1007/s11467-015-0507-8
  本期目录
Redshift drift constraints on f(T) gravity
Jia-Jia Geng1,Rui-Yun Guo1,Dong-Ze He1,Jing-Fei Zhang1,Xin Zhang1,2,*()
1. Department of Physics, College of Sciences, Northeastern University, Shenyang 110004, China
2. Center for High Energy Physics, Peking University, Beijing 100080, China
 全文: PDF(377 KB)  
Abstract

We explore the impact of the Sandage−Loeb (SL) test on the precision of cosmological constraints for f(T) gravity theories. The SL test is an important supplement to current cosmological observations because it measures the redshift drift in the Lyman-α forest in the spectra of distant quasars, covering the “redshift desert” of 2z5. To avoid data inconsistency, we use the best-fit models based on current combined observational data as fiducial models to simulate 30 mock SL test data. We quantify the impact of these SL test data on parameter estimation for f(T) gravity theories. Two typical f(T) models are considered, the power-law model f(T)PL and the exponential-form model f(T)EXP. The results show that the SL test can effectively break the existing strong degeneracy between the present-day matter density Ωm and the Hubble constant H0 in other cosmological observations. For the considered f(T) models, a 30-year observation of the SL test can improve the constraint precision of Ωm and H0 enormously but cannot effectively improve the constraint precision of the model parameters.

Key wordsredshift drift    cosmological constraints    dark energy    modified gravity    f(T) gravity
收稿日期: 2015-08-20      出版日期: 2015-10-26
Corresponding Author(s): Xin Zhang   
 引用本文:   
. [J]. Frontiers of Physics, 2015, 10(5): 109501.
Jia-Jia Geng,Rui-Yun Guo,Dong-Ze He,Jing-Fei Zhang,Xin Zhang. Redshift drift constraints on f(T) gravity. Front. Phys. , 2015, 10(5): 109501.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-015-0507-8
https://academic.hep.com.cn/fop/CN/Y2015/V10/I5/109501
1 A. Sandage, The change of redshift and apparent luminosity of galaxies due to the deceleration of selected expanding universes, Astrophys. J. 136, 319 (1962)
https://doi.org/10.1086/147385
2 A. Loeb, Direct measurement of cosmological parameters from the cosmic deceleration of extragalactic objects, Astrophys. J. 499, L111 (1998)
https://doi.org/10.1086/311375
3 P. S. Corasaniti, D. Huterer, and A. Melchiorri, Exploring the dark energy redshift desert with the Sandage−Loeb test, Phys. Rev. D 75, 062001 (2007)
https://doi.org/10.1103/PhysRevD.75.062001
4 A. Balbi and C. Quercellini, The time evolution of cosmological redshift as a test of dark energy, Mon. Not. Roy. Astron. Soc 382, 1623 (2007)
https://doi.org/10.1111/j.1365-2966.2007.12407.x
5 H. B. Zhang, W. Zhong, Z. H. Zhu, and S. He, Exploring holographic dark energy model with Sandage−Leob test, Phys. Rev. D 76, 123508 (2007)
https://doi.org/10.1103/PhysRevD.76.123508
6 J. Zhang, L. Zhang, and X. Zhang, Sandage−Loeb test for the new agegraphic and Ricci dark energy models, Phys. Lett. B 691, 11 (2010)
https://doi.org/10.1016/j.physletb.2010.06.013
7 Z. Li, K. Liao, P. Wu, H. Yu, and Z. H. Zhu, Probing modified gravity theories with the Sandage−Loeb test, Phys. Rev. D 88, 2, 023003 (2013)
8 S. Yuan, S. Liu, and T. J. Zhang, Breaking through the high redshift bottleneck of observational Hubble parameter Data: The Sandage−Loeb signal Scheme, J. Cosmol. Astropart. Phys. 02, 025 (2015)
9 M. Martinelli, S. Pandolfi, C. J. A. P. Martins, and P. E. Vielzeuf, Probing dark energy with redshift-drift, Phys. Rev. D 86, 123001 (2012)
https://doi.org/10.1103/PhysRevD.86.123001
10 J. J. Geng, J. F. Zhang, and X. Zhang, Quantifying the impact of future Sandage−Loeb test data on dark energy constraints, J. Cosmol. Astropart. Phys. 07, 006 (2014)
11 J. J. Geng, J. F. Zhang, and X. Zhang, Parameter estimation with Sandage−Loeb test, J. Cosmol. Astropart. Phys. 12, 018 (2014)
12 J. J. Geng, Y. H. Li, J. F. Zhang, and X. Zhang, Redshift drift exploration for interacting dark energy, Eur. Phys. J. C 75(8), 356 (2015)
https://doi.org/10.1140/epjc/s10052-015-3581-8
13 J. Liske, A. Grazian, E. Vanzella, M. Dessauges, M. Viel, L. Pasquini, M. Haehnelt, S. Cristiani, , Cosmic dynamics in the era of extremely large telescopes, Mon. Not. Roy. Astron. Soc 386, 1192 (2008)
https://doi.org/10.1111/j.1365-2966.2008.13090.x
14 P. J. E. Peebles and B. Ratra, Cosmology with a time variable cosmological constant, Astrophys. J. 325, L17 (1988)
https://doi.org/10.1086/185100
15 R. R. Caldwell, Spintessence! New models for dark matter and dark energy, Phys. Lett. B 545, 23 (2002)
https://doi.org/10.1016/S0370-2693(02)02589-3
16 C. Armendariz-Picon, T. Damour, and V. Mukhanov, k-inflation, Phys. Lett. B 458, 209 (1999)
17 A. Y. Kamenshchik, U. Moschella, and V. Pasquier, An Alternative to quintessence, Phys. Lett. B 511, 265 (2001)
https://doi.org/10.1016/S0370-2693(01)00571-8
18 X. Zhang, F. Q. Wu, and J. F. Zhang, New generalized Chaplygin gas as a scheme for unification of dark energy and dark matter, J. Cosmol. Astropart. Phys. 01, 003 (2006)
19 T. Padmanabhan, Accelerated expansion of the universe driven by tachyonic matter, Phys. Rev. D 66, 021301 (2002)
https://doi.org/10.1103/PhysRevD.66.021301
20 M. Li, A model of holographic dark energy, Phys. Lett. B 603, 1 (2004)
https://doi.org/10.1016/j.physletb.2004.10.014
21 X. Zhang and F. Q. Wu, Constraints on holographic dark energy from latest supernovae, galaxy clustering, and cosmic microwave background anisotropy observations, Phys. Rev. D 76, 023502 (2007)
https://doi.org/10.1103/PhysRevD.76.023502
22 X. Zhang, Heal the world: Avoiding the cosmic doomsday in the holographic dark energy model, Phys. Lett. B 683, 81 (2010)
https://doi.org/10.1016/j.physletb.2009.12.021
23 Y. H. Li, S. Wang, X. D. Li, and X. Zhang, Holographic dark energy in a Universe with spatial curvature and massive neutrinos: A fullMarkov chainMonte Carlo exploration, J. Cosmol. Astropart. Phys. 02, 033 (2013)
24 H. Wei, R. G. Cai, and D. F. Zeng, Hessence: A new view of quintom dark energy, Class. Quant. Grav. 22, 3189 (2005)
https://doi.org/10.1088/0264-9381/22/16/005
25 W. Zhao and Y. Zhang, The state equation of the Yang−Mills field dark energy models, Class. Quant. Grav. 23, 3405 (2006)
https://doi.org/10.1088/0264-9381/23/10/011
26 X. Zhang, Reconstructing holographic quintessence, Phys. Lett. B 648, 1 (2007)
https://doi.org/10.1016/j.physletb.2007.02.069
27 Y. H. Li, J. F. Zhang, and X. Zhang, Parametrized post-Friedmann framework for interacting dark energy, Phys. Rev. D 90, 063005 (2014)
https://doi.org/10.1103/PhysRevD.90.063005
28 Y. H. Li, J. F. Zhang, and X. Zhang, Exploring the full parameter space for an interacting dark energy model with recent observations including redshift-space distortions: Application of the parametrized post-Friedmann approach, Phys. Rev. D 90, 123007 (2014)
https://doi.org/10.1103/PhysRevD.90.123007
29 S. Wang, J. J. Geng, Y. L. Hu, and X. Zhang, Revisit of constraints on holographic dark energy: SNLS3 dataset with the effects of time-varying β and different light-curve fitters, Sci. China Phys. Mech. Astron. 58(1), 019801 (2015)
https://doi.org/10.1007/s11433-014-5628-5
30 M. Zhang, C. Y. Sun, Z. Y. Yang, and R. H. Yue, Cosmological evolution of quintessence with a sign-changing interaction in dark sector, Sci. China- Phys. Mech. Astron. 57(9), 1805 (2014)
https://doi.org/10.1007/s11433-014-5550-x
31 Y. Z. Hu, M. Li, X. D. Li, and Z. H. Zhang, Investigating the possibility of a turning point in the dark energy equation of state, Sci. China- Phys. Mech. Astron. 57(8), 1607 (2014)
https://doi.org/10.1007/s11433-014-5497-y
32 J. B. Lu, L. D. Chen, L. X. Xu, and T. Q. Li, Comparing the VGCG model as the unification of dark sectors with observations, Sci. China- Phys. Mech. Astron. 57(4), 796−800 (2014)
https://doi.org/10.1007/s11433-013-5300-5
33 J. F. Zhang, L. A. Zhao, and X. Zhang, Revisiting the interacting model of new agegraphic dark energy, Sci. China- Phys. Mech. Astron. 57(2), 387 (2014)
https://doi.org/10.1007/s11433-013-5378-9
34 X. X. Duan, Y. C. Li, and C. J. Gao, Constraining the lattice fluid dark energy from SNe Ia, BAO and OHD, Sci. China- Phys. Mech. Astron. 56(6), 1220 (2013)
https://doi.org/10.1007/s11433-013-5080-y
35 S. Wang, Y. Z. Wang, J. J. Geng, and X. Zhang, Effects of time-varying β in SNLS3 on constraining interacting dark energy models, Eur. Phys. J. C 74(11), 3148 (2014)
https://doi.org/10.1140/epjc/s10052-014-3148-0
36 J. F. Zhang, M. M. Zhao, Y. H. Li, and X. Zhang, Neutrinos in the holographic dark energy model: Constraints from latest measurements of expansion history and growth of structure, J. Cosmol. Astropart. Phys. 04, 038 (2015)
37 J. F. Zhang, M. M. Zhao, J. L. Cui, and X. Zhang, Revisiting the holographic dark energy in a non-flat universe: Alternative model and cosmological parameter constraints, Eur. Phys. J. C 74(11), 3178 (2014)
https://doi.org/10.1140/epjc/s10052-014-3178-7
38 M. Li, X. D. Li, S. Wang, and Y. Wang, Dark energy: A brief review, Front. Phys. 8(6), 828 (2013)
https://doi.org/10.1007/s11467-013-0300-5
39 V. Sahni and S. Habib, Does inflationary particle production suggest Omega(m) less than 1? Phys. Rev. Lett. 81, 1766 (1998)
https://doi.org/10.1103/PhysRevLett.81.1766
40 L. Parker and A. Raval, Nonperturbative effects of vacuum energy on the recent expansion of the universe, Phys. Rev. D 60, 063512 (1999)
https://doi.org/10.1103/PhysRevD.60.063512
41 G. Dvali, G. Gabadadze, and M. Porrati, 4-D gravity on a brane in 5-D Minkowski space, Phys. Lett. B 485, 208 (2000)
https://doi.org/10.1016/S0370-2693(00)00669-9
42 S. Nojiri, S. D. Odintsov, and M. Sasaki, Gauss−Bonnet dark energy, Phys. Rev. D 71, 123509 (2005)
https://doi.org/10.1103/PhysRevD.71.123509
43 A. Nicolis, R. Rattazzi, and E. Trincherini, The Galileon as a local modification of gravity, Phys. Rev. D 79, 064036 (2009)
https://doi.org/10.1103/PhysRevD.79.064036
44 W. Hu and I. Sawicki, Models of f(R) cosmic acceleration that evade solar-system tests, Phys. Rev. D 76, 064004 (2007)
https://doi.org/10.1103/PhysRevD.76.064004
45 A. A. Starobinsky, Disappearing cosmological constant in f(R) gravity, J. Exp. Theor. Phys. Lett. 86, 157 (2007)
https://doi.org/10.1134/S0021364007150027
46 G. R. Bengochea and R. Ferraro, Dark torsion as the cosmic speed-up, Phys. Rev. D 79, 124019 (2009)
https://doi.org/10.1103/PhysRevD.79.124019
47 E. V. Linder, Einstein’s other gravity and the acceleration of the universe, Phys. Rev. D 81, 127301 (2010)
https://doi.org/10.1103/PhysRevD.81.127301
48 T. Harko, F. S. N. Lobo, S. Nojiri, and S. D. Odintsov, f(R, T) gravity, Phys. Rev. D 84, 024020 (2011)
https://doi.org/10.1103/PhysRevD.84.024020
49 P. Wu and H. W. Yu, The dynamical behavior of f(T) theory, Phys. Lett. B 692, 176 (2010)
https://doi.org/10.1016/j.physletb.2010.07.038
50 R. Zheng and Q. G. Huang, Growth factor in f(T) gravity, J. Cosmol. Astropart. Phys. 03, 002 (2011)
51 W. Tower, Modified entropic gravity revisited, Sci. China-Phys. Mech. Astron. 57(9), 1623 (2014)
https://doi.org/10.1007/s11433-014-5545-7
52 J. Wu, Z. X. Li, P. X. Wu, and H. W. Yu, Constrains on f(T) gravity with the strong gravitational lensing data, Sci. China- Phys. Mech. Astron. 57(5), 988−993 (2014)
https://doi.org/10.1007/s11433-013-5302-3
53 Y. K. Tang, H. S. Zhang, C. Y. Chen, and X. Z. Li, Fluctuation with dust of de Sitter ground state of scalar-tensor gravity, Sci. China- Phys. Mech. Astron. 57(3), 411−417(2014)
https://doi.org/10.1007/s11433-014-5395-3
54 S. Wang, Y. Z. Wang, and X. Zhang, Effects of a timevarying color-luminosity parameter β on the cosmological constraints of modified gravity models, Commun. Theor. Phys. 62(6), 927 (2014)
https://doi.org/10.1088/0253-6102/62/6/23
55 J. F. Zhang, Y. H. Li, and X. Zhang, Measuring growth index in a universe with sterile neutrinos, Phys. Lett. B 739, 102 (2014)
https://doi.org/10.1016/j.physletb.2014.10.044
56 Y. H. Li, J. F. Zhang, and X. Zhang, Probing f(R) cosmology with sterile neutrinos via measurements of scaledependent growth rate of structure, Phys. Lett. B 744, 213 (2015)
https://doi.org/10.1016/j.physletb.2015.03.063
57 A. Conley, , Supernova constraints and systematic uncertainties from the first 3 years of the supernova legacy survey, Astrophys. J. Suppl. 192, 1 (2011)
https://doi.org/10.1088/0067-0049/192/1/1
58 G. Hinshaw, , Nine-year Wilkinson microwave anisotropy probe (WMAP) observations: Cosmological parameter results, Astrophys. J. Suppl. 208, 19 (2013)
https://doi.org/10.1088/0067-0049/208/2/19
59 F. Beutler, C. Blake, M. Colless, D. H. Jones, L. Staveley-Smith, L. Campbell, Q. Parker, W. Saunders, , The 6dF galaxy survey: Baryon acoustic oscillations and the local hubble constant, Mon. Not. Roy. Astron. Soc. 416, 3017 (2011)
https://doi.org/10.1111/j.1365-2966.2011.19250.x
60 N. Padmanabhan, X. Xu, D. J. Eisenstein, R. Scalzo, A. J. Cuesta, K. T. Mehta, and E. Kazin, A 2 percent distance to z=0.35 by reconstructing baryon acoustic oscillations- I. Methods and application to the Sloan Digital Sky Survey, Mon. Not. Roy. Astron. Soc. 427(3), 2132 (2012)
https://doi.org/10.1111/j.1365-2966.2012.21888.x
61 L. Anderson, E. Aubourg, S. Bailey, D. Bizyaev, M. Blanton, A. S. Bolton, J. Brinkmann, J. R. Brownstein, , The clustering of galaxies in the SDSS-III baryon oscillation spectroscopic survey: Baryon acoustic oscillations in the data release 9 spectroscopic galaxy sample, Mon. Not. Roy. Astron. Soc. 427(4), 3435 (2013)
https://doi.org/10.1111/j.1365-2966.2012.22066.x
62 C. Blake, S. Brough, M. Colless, C. Contreras, W. Couch, S. Croom, D. Croton, T. Davis, , The WiggleZ Dark Energy Survey: Joint measurements of the expansion and growth history at z<1, Mon. Not. Roy. Astron. Soc. 425, 405 (2012)
https://doi.org/10.1111/j.1365-2966.2012.21473.x
63 Y. Wang and S. Wang, Distance priors from planck and dark energy constraints from current data, Phys. Rev. D 88, 043522 (2013)
https://doi.org/10.1103/PhysRevD.88.043522
64 A. G. Riess, , A 3% solution: Determination of the Hubble constant with the Hubble space telescope and wide field camera 3, Astrophys. J. 730, 119 (2011)
https://doi.org/10.1088/0004-637X/730/2/119
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed