Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2015, Vol. 10 Issue (5): 104101   https://doi.org/10.1007/s11467-015-0508-7
  本期目录
Design of a sector bowtie nano-rectenna for optical power and infrared detection
Kai Wang1,2,Haifeng Hu1,Shan Lu1,Lingju Guo1(),Tao He1,*()
1. CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
 全文: PDF(640 KB)  
Abstract

We designed a sector bowtie nanoantenna integrated with a rectifier (Au−TiOx−Ti diode) for collecting infrared energy. The optical performance of the metallic bowtie nanoantenna was numerically investigated at infrared frequencies (5−30 μm) using three-dimensional frequency-domain electromagnetic field calculation software based on the finite element method. The simulation results indicate that the resonance wavelength and local field enhancement are greatly affected by the shape and size of the bowtie nanoantenna, as well as the relative permittivity and conductivity of the dielectric layer. The output current of the rectified nano-rectenna is substantially at nanoampere magnitude with an electric field intensity of 1 V/m. Moreover, the power conversion efficiency for devices with three different substrates illustrates that a substrate with a larger refractive index yields a higher efficiency and longer infrared response wavelength. Consequently, the optimized structure can provide theoretical support for the design of novel optical rectennas and fabrication of optoelectronic devices.

Key wordsnano-rectenna    MIM diode    surface plasmon resonance    local field enhancement    photoelectric conversion efficiency
收稿日期: 2015-08-01      出版日期: 2015-10-26
Corresponding Author(s): Tao He   
 引用本文:   
. [J]. Frontiers of Physics, 2015, 10(5): 104101.
Kai Wang,Haifeng Hu,Shan Lu,Lingju Guo,Tao He. Design of a sector bowtie nano-rectenna for optical power and infrared detection. Front. Phys. , 2015, 10(5): 104101.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-015-0508-7
https://academic.hep.com.cn/fop/CN/Y2015/V10/I5/104101
1 K. Shankar, J. Bandara, M. Paulose, H. Wietasch, O. K. Varghese, G. K. Mor, T. J. LaTempa, M. Thelakkat, and C. A. Grimes, Highly efficient solar cells using TiO2 nanotube arrays sensitized with a donor-antenna dye, Nano Lett. 8(6), 1654 (2008)
https://doi.org/10.1021/nl080421v
2 G. Gol’Tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, , Picosecond superconducting single-photon optical detector, Appl. Phys. Lett. 91, 012002 (2003)
3 R. Gordon, D. Sinton, K. L. Kavanagh, and A. G. Brolo, A new generation of sensors based on extraordinary optical transmission, Acc. Chem. Res. 41(8), 1049 (2008)
https://doi.org/10.1021/ar800074d
4 I. Friedler, C. Sauvan, J. P. Hugonin, P. Lalanne, J. Claudon, and J. M. Gérard, Solid-state single photon sources: the nanowire antenna, Opt. Express 17(4), 2095 (2009)
https://doi.org/10.1364/OE.17.002095
5 A. Langari and H. Hashemi, A cooling solution for power amplifier modules in cellular phone applications, Electronic Components and Technology Conference 49th. 316−320 (1999)
6 C. R. Williams, S. R. Andrews, S. Maier, A. Fernández-Domínguez, L. Martín-Moreno, and F. García-Vidal, Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces, Nat. Photonics 2(3), 175 (2008)
https://doi.org/10.1038/nphoton.2007.301
7 P. Neutens, L. Lagae, G. Borghs, and P. Van Dorpe, Electrical excitation of confined surface plasmon polaritons in metallic slot waveguides, Nano Lett. 10(4), 1429 (2010)
https://doi.org/10.1021/nl1003416
8 K. A. Willets, Plasmon point spread functions: How do we model plasmon-mediated emission processes? Front. Phys. 9(1), 3 (2014)
https://doi.org/10.1007/s11467-013-0356-2
9 Y. L. Zhao, Y. L. Song, W. G. Song, W. Liang, X. Y. Jiang, Z. Y. Tang, H. X. Xu, Z. X. Wei, Y. Q. Liu, M. H. Liu, L. Jiang, X. H. Bao, L. J. Wan, and C. L. Bai, Progress of nanoscience in China, Front. Phys. 9(3), 257 (2014)
https://doi.org/10.1007/s11467-013-0324-x
10 A. Ono, M. Kikawada, W. Inami, and Y. Kawata, Surface plasmon coupled fluorescence in deep-ultraviolet excitation by Kretschmann configuration, Front. Phys. 9(1), 60 (2014)
https://doi.org/10.1007/s11467-013-0385-x
11 D. K. Gramotnev and S. I. Bozhevolnyi, Plasmonics beyond the diffraction limit, Nat. Photonics 4(2), 83 (2010)
https://doi.org/10.1038/nphoton.2009.282
12 R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, Plasmon lasers at deep subwavelength scale, Nature 461(7264), 629 (2009)
https://doi.org/10.1038/nature08364
13 C. Fumeaux, W. Herrmann, F. Kneubühl, and H. Rothuizen, Nanometer thin-film Ni−NiO−Ni diodes for detection and mixing of 30 THz radiation, Infrared Phys. Technol. 39(3), 123 (1998)
https://doi.org/10.1016/S1350-4495(98)00004-8
14 J. A. Bean, A. Weeks, and G. D. Boreman, Performance optimization of antenna-coupled tunnel diode infrared detectors, Quantum Electron. 47(1), 126 (2011)
https://doi.org/10.1109/JQE.2010.2081971
15 Z. Zhu, S. Joshi, and G. Moddel, High performance room temperature rectenna IR detectors using graphene geometric diodes, Selected Topics in Quantum Electronics 20, (2014)
16 L. Son, T. Tachiki, and T. Uchida, Fabrication of Vox microbolometer detector coupled with thin-film spiral antenna by metal-organic decomposition, 37th International Conference on Infrared, Millimeter, and Terahertz Waves(IRMMW-THz)1−2 (2012)
17 S. Krishnan, H. La Rosa, E. Stefanakos, S. Bhansali, and K. Buckle, Design and development of batch fabricatable metal−insulator−metal diode and microstrip slot antenna as rectenna elements, Sens. Actuators A Phys. 142(1), 40 (2008)
https://doi.org/10.1016/j.sna.2007.04.021
18 K. Choi, F. Yesilkoy, G. Ryu, S. H. Cho, N. Goldsman, M. Dagenais, and M. Peckerar, A focused asymmetric metal−insulator−metal tunneling diode: Fabrication, DC characteristics and RF rectification analysis, IEEE Trans. Electron. Dev. 58(10), 3519 (2011)
https://doi.org/10.1109/TED.2011.2162414
19 S. Zhang, L. Wang, C. Xu, D. Li, L. Chen, and D. Yang, Fabrication of Ni-NiO-Cu metal-insulator-metal tunnel diodes via anodic aluminum oxide templates, ECS Solid State Letters 2(1), Q1 (2012)
https://doi.org/10.1149/2.001301ssl
20 M. Gadalla, M. Abdel-Rahman, and A. Shamim, Design, Optimization and Fabrication of a 28.3 THz Nano-Rectenna for Infrared Detection and Rectification, Scientific reports 4, (2014)
https://doi.org/10.1038/srep04270
21 P. Mühlschlegel, H. J. Eisler, O. Martin, B. Hecht, and D. Pohl, Resonant optical antennas, Science 308(5728), 1607 (2005)
https://doi.org/10.1126/science.1111886
22 D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. Moerner, Gap-dependent optical coupling of single “bowtie”nanoantennas resonant in the visible, Nano Lett. 4(5), 957 (2004)
https://doi.org/10.1021/nl049951r
23 A. Sundaramurthy, K. Crozier, G. Kino, D. Fromm, P. Schuck, and W. Moerner, Field enhancement and gapdependent resonance in a system of two opposing tip-to-tip Au nanotriangles, Phys. Rev. B 72(16), 165409 (2005)
https://doi.org/10.1103/PhysRevB.72.165409
24 F. J. González, J. Alda, J. Simón, J. Ginn, and G. Boreman, The effect of metal dispersion on the resonance of antennas at infrared frequencies, Infrared Phys. Technol. 52(1), 48 (2009)
https://doi.org/10.1016/j.infrared.2008.12.002
25 A. Alù and N. Engheta, Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas, Phys. Rev. Lett. 101(4), 043901 (2008)
https://doi.org/10.1103/PhysRevLett.101.043901
26 T. R. Lin, S. W. Chang, S. L. Chuang, Z. Zhang, and P. J. Schuck, Coating effect on optical resonance of plasmonic nanobowtie antenna, Appl. Phys. Lett. 97(6), 063106 (2010)
https://doi.org/10.1063/1.3478228
27 S. Choi, and K. Sarabandi, Design optimization of bowtie nanoantenna for high-efficiency thermophotovoltaics, 2013 US National Committee of URSI National in Radio Science Meeting (USNC-URSI NRSM)1−1(2013)
28 J. W. Liaw, Analysis of a bowtie nanoantenna for the enhancement of spontaneous emission, IEEE J. Sel. Top. Quantum Electron. 14(6), 1441 (2008)
https://doi.org/10.1109/JSTQE.2008.916755
29 X. Lei, and V. Van, FDTD modeling of traveling-wave MIM diode for ultrafast pulse detection, Opt. Commun. 294, 344 (2013)
https://doi.org/10.1016/j.optcom.2012.12.031
30 A. Sabaawi, C. Tsimenidis, and B. Sharif, Bow-tie nanoarray rectenna: Design and optimization, 2012 6th Euro-pean Conference in Antennas and Propagation (EUCAP)1975−1978 (2012)
31 L. P. Xia, Z. Yang, S. Y. Yin, W. R. Guo, J. L. Du, and C. L. Du, Hole arrayed metalinsulator-metal structure for surface enhanced Raman scattering by self-assembling polystyrene spheres, Front. Phys. 9(1), 64 (2014)
https://doi.org/10.1007/s11467-013-0345-5
32 A. M. Sabaawi, C. C. Tsimenidis, and B. S. Sharif, Analysis and modeling of infrared solar rectennas, IEEE J. Sel. Top. Quantum Electron. 19(3), 9000208 (2013)
https://doi.org/10.1109/JSTQE.2012.2227686
33 E. Briones, J. Alda, and F. J. González, Conversion efficiency of broad-band rectennas for solar energy harvesting applications, Opt. Express 21(S3), A412 (2013)
https://doi.org/10.1364/OE.21.00A412
34 D. K. Kotter, S. D. Novack, W. Slafer, and P. Pinhero, Theory and manufacturing processes of solar nanoantenna electromagnetic collectors, J. Sol. Energy Eng. 132(1), 011014 (2010)
https://doi.org/10.1115/1.4000577
35 M. Gallo, L. Mescia, O. Losito, M. Bozzetti, and F. Prudenzano, Design of optical antenna for solar energy collection, Energy 39(1), 27 (2012)
https://doi.org/10.1016/j.energy.2011.02.026
36 Y. M. Wu, L. W. Li, and B. Liu, Gold bow-tie shaped aperture nanoantenna: Wide band near-field resonance and farfield radiation, IEEE Trans. Magn. 46(6), 1918 (2010)
https://doi.org/10.1109/TMAG.2010.2043063
37 M. A. Ordal, R. J. Bell, R. W. Jr Alexander, L. L. Long, and M. R. Querry, Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W, Appl. Opt. 24(24), 4493 (1985)
https://doi.org/10.1364/AO.24.004493
38 T. Schumacher, K. Kratzer, D. Molnar, M. Hentschel, H. Giessen, and M. Lippitz, Nanoantenna-enhanced ultrafast nonlinear spectroscopy of a single gold nanoparticle, Nat. Commun. 2, 333 (2011)
https://doi.org/10.1038/ncomms1334
39 M. Husnik, S. Linden, R. Diehl, J. Niegemann, K. Busch, and M. Wegener, Quantitative experimental determination of scattering and absorption cross-section spectra of individual optical metallic nanoantennas, Phys. Rev. Lett. 109(23), 233902 (2012)
https://doi.org/10.1103/PhysRevLett.109.233902
40 I. Wilke, Y. Oppliger, W. Herrmann, and F. Kneubühl, Nanometer thin-film Ni-NiO-Ni diodes for 30 THz radiation, Appl. Phys. A 58(4), 329 (1994)
https://doi.org/10.1007/BF00323606
41 C. Fumeaux, W. Herrmann, H. Rothuizen, P. De Natale, and F. Kneubühl, Mixing of 30 THz laser radiation with nanometer thin-film Ni-NiO-Ni diodes and integrated bowtie antennas, Appl. Phys. B 63(2), 135 (1996)
https://doi.org/10.1007/BF01095263
42 C. Fumeaux, G. D. Boreman, W. Herrmann, F. K. Kneubühl, and H. Rothuizen, Spatial impulse response of lithographic infrared antennas, Appl. Opt. 38(1), 37 (1999)
https://doi.org/10.1364/AO.38.000037
43 J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, Optical properties of coupled metallic nanorods for field-enhanced spectroscopy, Phys. Rev. B 71(23), 235420 (2005)
https://doi.org/10.1103/PhysRevB.71.235420
44 W. Ding, R. Bachelot, S. Kostcheev, P. Royer, and R. E. de Lamaestre, Surface plasmon resonances in silver Bowtie nanoantennas with varied bow angles, J. Appl. Phys. 108(12), 124314 (2010)
https://doi.org/10.1063/1.3524504
45 L. Novotny, Effective wavelength scaling for optical antennas, Phys. Rev. Lett. 98(26), 266802 (2007)
https://doi.org/10.1103/PhysRevLett.98.266802
46 W. Ding, S. Andrews, and S. Maier, Internal excitation and superfocusing of surface plasmon polaritons on a silvercoated optical fiber tip, Phys. Rev. A 75(6), 063822 (2007)
https://doi.org/10.1103/PhysRevA.75.063822
47 Z. J. Coppens, W. Li, D. G. Walker, and J. G. Valentine, Probing and controlling photothermal heat generation in plasmonic nanostructures, Nano Lett. 13(3), 1023 (2013)
https://doi.org/10.1021/nl304208s
48 W. L. Barnes, A. Dereux, and T. W. Ebbesen, Surface plasmon subwavelength optics, Nature 424(6950), 824 (2003)
https://doi.org/10.1038/nature01937
49 A. Novitsky, A. Uskov, C. Gritti, and I. Protsenko, Photon absorption and photocurrent in solar cells below semiconductor bandgap due to electron photoemission from plasmonic nanoantennas, Prog. Photovolt. Res. Appl. (2012)
50 S. V. Zhukovsky, V. E. Babicheva, A. V. Uskov, I. E. Protsenko, and A. V. Lavrinenko, Enhanced electron photoemission by collective lattice resonances in plasmonic nanoparticle-array photodetectors and solar cells, Plasmonics 9(2), 283 (2014)
https://doi.org/10.1007/s11468-013-9621-z
51 P. C. Chang, C. J. Chien, D. Stichtenoth, C. Ronning, and J. G. Lu, Finite size effect in ZnO nanowires, Appl. Phys. Lett. 90(11), 113101 (2007)
https://doi.org/10.1063/1.2712507
52 J. Li, C. Wang, H. Peng, M. Wang, R. Zhang, H. Wang, J. Liu, M. L. Zhao, and L. M. Mei, Vibrational and thermal properties of small diameter silicon nanowires, J. Appl. Phys. 108(6), 063702 (2010)
https://doi.org/10.1063/1.3481406
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed