Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2015, Vol. 10 Issue (6): 107701   https://doi.org/10.1007/s11467-015-0512-y
  本期目录
Orientation-dependent ferroelectricity of strained PbTiO3 films
Hui-Min Zhang,Ming An,Xiao-Yan Yao(),Shuai Dong()
Department of Physics, Southeast University, Nanjing 211189, China
 全文: PDF(240 KB)  
Abstract

PbTiO3 is a simple but very important ferroelectric oxide that has been extensively studied and widely used in various technological applications. However, most previous studies and applications were based on the bulk material or the conventional [001]-orientated films. There are few studies on PbTiO3 films grown along other crystalline axes. In this study, a first-principles calculation was performed to compute the polarization of PbTiO3 films strained by SrTiO3 and LaAlO3 substrates. Our results show that the polarization of PbTiO3 films strongly depends on the growth orientation as well as the monoclinic angles. Further, it is suggested that the ferroelectricity of PbTiO3 mainly depends on the tetragonality of the lattice, instead of the simple strain.

Key wordsPbTiO3    tetragonality    strain
收稿日期: 2015-09-04      出版日期: 2015-10-29
Corresponding Author(s): Xiao-Yan Yao,Shuai Dong   
 引用本文:   
. [J]. Frontiers of Physics, 2015, 10(6): 107701.
Hui-Min Zhang,Ming An,Xiao-Yan Yao,Shuai Dong. Orientation-dependent ferroelectricity of strained PbTiO3 films. Front. Phys. , 2015, 10(6): 107701.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-015-0512-y
https://academic.hep.com.cn/fop/CN/Y2015/V10/I6/107701
1 E.Dagotto, When oxides meet face to face, Science 318(5853), 1076 (2007)
https://doi.org/10.1126/science.1151094
2 J.Mannhart, and D. G.Schlom, Oxide interfaces - An opportunity for electronics, Science 327(5973), 1607 (2010)
https://doi.org/10.1126/science.1181862
3 H. Y.Hwang, Y.Iwasa, M.Kawasaki, B.Keimer, N.Nagaosa, and Y.Tokura, Emergent phenomena at oxide interfaces, Nat. Mater.11(2), 103 (2012)
https://doi.org/10.1038/nmat3223
4 W. S.Choi, S. A.Lee, J. H.You, S.Lee, and H. N.Lee, Resonant tunnelling in a quantum oxide superlattice, Nat. Commun.6, 7424 (2015)
https://doi.org/10.1038/ncomms8424
5 L.Jiang, W. S.Choi, H.Jeen, S.Dong, Y.Kim, M. G.Han, Y.Zhu, S.Kalinin, E.Dagotto, T.Egami, and H. N.Lee, Tunneling electroresistance induced by interfacial phase transitions in ultrathin oxide heterostructures, Nano Lett.13(12), 5837 (2013)
https://doi.org/10.1021/nl4025598
6 S.Dong and E.Dagotto, Quantum confinement induced magnetism in LaNiO3-LaMnO3 superlattices, Phys. Rev. B 87(19), 195116 (2013)
https://doi.org/10.1103/PhysRevB.87.195116
7 H. M.Zhang, Y. K.Weng, X. Y.Yao, and S.Dong, Charge transfer and hybrid ferroelectricity in (YFeO3)n/(YTiO3)n magnetic superlattices, Phys. Rev. B 91(19), 195145 (2015)
https://doi.org/10.1103/PhysRevB.91.195145
8 C. G.Duan, Interface/surface magnetoelectric effects: New routes to the electric field control of magnetism, Front. Phys.7(4), 375 (2012)
https://doi.org/10.1007/s11467-011-0195-y
9 K.Ueda, H.Tabata, and T.Kawai, Control of magnetic properties in LaCrO3-LaFeO3 artificial superlattices, J. Appl. Phys.89(5), 2847 (2001)
https://doi.org/10.1063/1.1327287
10 Y.Zhu, S.Dong, Q.Zhang, S.Yunoki, Y.Wang, and J. M.Liu, Tailoring magnetic orders in (LaFeO3)n/(LaCrO3)n superlattices model, J. Appl. Phys.110(5), 053916 (2011)
https://doi.org/10.1063/1.3631787
11 M.Gibert, P.Zubko, R.Scherwitzl, J.Íñiguez, and J. M.Triscone, Exchange bias in LaNiO3-LaMnO3 superlattices, Nat. Mater.11(3), 195 (2012)
https://doi.org/10.1038/nmat3224
12 X.Huang, Y. K.Tang, and S.Dong, Strain-engineered A-type antiferromagnetic order in YTiO3: A first principles calculation, J. Appl. Phys. 113, 17E108 (2013)
13 X.Huang, Q. Y.Xu, and S.Dong, Orientationdependent magnetism and orbital structure of strained YTiO3 films on LaAlO3 substrates, J. Appl. Phys. 117, 17C703 (2015)
14 S. C.Chae, Y. J.Chang, S. S. A.Seo, T. W.Noh, D. W.Kim, and C. U.Jung, Epitaxial growth and the magnetic properties of orthorhombic YTiO3 thin films, Appl. Phys. Lett.89(18), 182512 (2006)
https://doi.org/10.1063/1.2374850
15 Y. K.Weng and S.Dong, Magnetism and electronic structure of (001)- and (111)-oriented LaTiO3 bilayers sandwiched in LaScO3 barriers, J. Appl. Phys. 117, 17C716 (2015) http://dx.doi.org/10.1063/1.4913637
16 R. N.Song, M. H.Hu, X. R.Chen, and J. D.Guo, Epitaxial growth and thermostability of cubic and hexagonal SrMnO3 films on SrTiO3(111), Front. Phys.10(3), 106802 (2015)
https://doi.org/10.1007/s11467-015-0467-z
17 A.Sani, M.Hafland, and D.Levy, Pressure and temperature dependence of the ferroelectric-paraelectric phase transition in PbTiO3, J. Solid State Chem.167(2), 446 (2002)
https://doi.org/10.1016/S0022-4596(02)99653-2
18 S. H.Lee, H. M.Jang, S. M.Cho, and G. C.Yi, Polarized Raman scattering of epitaxial PbTiO3 thin film with coexisting c and a domains, Appl. Phys. Lett.80(17), 3165 (2002)
https://doi.org/10.1063/1.1473864
19 V. G.Gavrilyachenko, R. I.Spinko, M. A.Martynenko, and E. G.Fesenko, Spontaneous polarization and coercive field of lead titanate, Sov. Phys. Solid State 12, 1203 (1970)
20 M. J.Haun, E.Furman, S. J.Jang, H. A.McKinstry, and L. E.Cross, Thermodynamic theory of PbTiO3, J. Appl. Phys.62(8), 3331 (1987)
https://doi.org/10.1063/1.339293
21 H.Sharma, J.Kreisel, and P.Ghosez, First-principles study of PbTiO3 under uniaxial strains and stresses, Phys. Rev. B 90(21), 214102 (2014)
https://doi.org/10.1103/PhysRevB.90.214102
22 E.Bousquet, M.Dawber, N.Stucki, C.Lichtensteiger, P.Hermet, S.Gariglio, J. M.Triscone, and P.Ghosez, Improper ferroelectricity in perovskite oxide artificial superlattices, Nature 452(7188), 732 (2008)
https://doi.org/10.1038/nature06817
23 Y. L.Tang, Y. L.Zhu, X. L.Ma, A. Y.Borisevich, A. N.Morozovska, E. A.Eliseev, W. Y.Wang, Y. J.Wang, Y. B.Xu, Z. D.Zhang, and S. J.Pennycook, Observation of a periodic array of flux-closure quadrants in strained ferroelectric PbTiO3 films, Science 348(6234), 547 (2015)
https://doi.org/10.1126/science.1259869
24 G.Kresse and J.Hafner, Ab initio molecular dynamics for liquid metals, Phys. Rev. B 47(1), 558 (1993)
https://doi.org/10.1103/PhysRevB.47.558
25 G.Kresse, and J.Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)
https://doi.org/10.1103/PhysRevB.54.11169
26 J. P.Perdew, A.Ruzsinszky, G. I.Csonka, O. A.Vydrov, G. E.Scuseria, L. A.Constantin, X.Zhou, and K.Burke, Restoring the density-gradient expansion for exchange in solids and surfaces, Phys. Rev. Lett.100(13), 136406 (2008)
https://doi.org/10.1103/PhysRevLett.100.136406
27 J. P.Perdew, K.Burke, and M.Frnzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett.77(18), 3865 (1996)
https://doi.org/10.1103/PhysRevLett.77.3865
28 G.Kresse, and D.Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59(3), 1758 (1999)
https://doi.org/10.1103/PhysRevB.59.1758
29 P. E.Blöchl, Projector augmented-wave method, Phys. Rev. B 50(24), 17953 (1994)
https://doi.org/10.1103/PhysRevB.50.17953
30 S. L.Dudarev, G. A.Botton, S. Y.Savrasov, C. J.Humphreys, and A. P.Sutton, Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study, Phys. Rev. B 57(3), 1505 (1998)
https://doi.org/10.1103/PhysRevB.57.1505
31 R.Resta, Macroscopic polarization in crystalline dielectrics: The geometric phase approach, Rev. Mod. Phys.66(3), 899 (1994)
https://doi.org/10.1103/RevModPhys.66.899
32 G.Sághi-Szabó, R. E.Cohen, and H.Krakauer, First-Principles Study of Piezoelectricity in PbTiO3, Phys. Rev. Lett.80(19), 4321 (1998)
https://doi.org/10.1103/PhysRevLett.80.4321
33 S.Piskunov, E.Heifets, R. I.Eglitis, and G.Borstel, Bulk properties and electronic structure of SrTiO3, BaTiO3, PbTiO3 perovskites: An ab initio HF/DFT study, Comput. Mater. Sci.29(2), 165 (2004)
https://doi.org/10.1016/j.commatsci.2003.08.036
34 C. J.Howard, B. J.Kennedy, and B. C.Chakoumakos, Neutron powder diffraction study of rhombohedral rareearth aluminates and the rhombohedral to cubic phase transition, J. Phys. Condens. Matter 12(4), 349 (2000)
https://doi.org/10.1088/0953-8984/12/4/301
35 R.Oja, K.Johnston, J.Frantti, and R. M. Nieminen, Computational study of (111) epitaxially strained ferroelectric perovskites BaTiO3 and PbTiO3, Phys. Rev. B 78(9), 094102 (2008)
https://doi.org/10.1103/PhysRevB.78.094102
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed