Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2016, Vol. 11 Issue (2): 111203   https://doi.org/10.1007/s11467-015-0517-6
  本期目录
The gluon mass generation mechanism: A concise primer
A. C. Aguilar1,D. Binosi2,J. Papavassiliou3,*()
1. University of Campinas (UNICAMP), “Gleb Wataghin” Institute of Physics 13083-859 Campinas, SP, Brazil
2. European Centre for Theoretical Studies in Nuclear Physics and Related Areas (ECT*) and Fondazione Bruno Kessler, Villa Tambosi, Strada delle Tabarelle 286, I-38123 Villazzano (TN), Italy
3. Department of Theoretical Physics and IFIC, University of Valencia and CSIC, E-46100, Valencia, Spain
 全文: PDF(533 KB)  
Abstract

We present a pedagogical overview of the nonperturbative mechanism that endows gluons with a dynamical mass. This analysis is performed based on pure Yang–Mills theories in the Landau gauge, within the theoretical framework that emerges from the combination of the pinch technique with the background field method. In particular, we concentrate on the Schwinger–Dyson equation satisfied by the gluon propagator and examine the necessary conditions for obtaining finite solutions within the infrared region. The role of seagull diagrams receives particular attention, as do the identities that enforce the cancellation of all potential quadratic divergences.We stress the necessity of introducing nonperturbative massless poles in the fully dressed vertices of the theory in order to trigger the Schwinger mechanism, and explain in detail the instrumental role of these poles in maintaining the Becchi–Rouet–Stora–Tyutin symmetry at every step of the mass-generating procedure. The dynamical equation governing the evolution of the gluon mass is derived, and its solutions are determined numerically following implementation of a set of simplifying assumptions. The obtained mass function is positive definite, and exhibits a power law running that is consistent with general arguments based on the operator product expansion in the ultraviolet region. A possible connection between confinement and the presence of an inflection point in the gluon propagator is briefly discussed.

Key wordsnonperturbative physics    Schwinger–Dyson equations    dynamical mass generation
收稿日期: 2015-07-21      出版日期: 2016-04-29
Corresponding Author(s): J. Papavassiliou   
 引用本文:   
. [J]. Frontiers of Physics, 2016, 11(2): 111203.
A. C. Aguilar,D. Binosi,J. Papavassiliou. The gluon mass generation mechanism: A concise primer. Front. Phys. , 2016, 11(2): 111203.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-015-0517-6
https://academic.hep.com.cn/fop/CN/Y2016/V11/I2/111203
1 J. M. Cornwall, Dynamical mass generation in continuum QCD, Phys. Rev. D 26, 1453 (1982)
https://doi.org/10.1103/PhysRevD.26.1453
2 A. C. Aguilar, A. A. Natale, and P. S. Rodrigues da Silva, Relating a gluon mass scale to an infrared fixed point in pure gauge QCD, Phys. Rev. Lett. 90, 152001 (2003), arXiv: hep-ph/0212105
https://doi.org/10.1103/PhysRevLett.90.152001
3 A. C. Aguilar, A. Mihara, and A. A. Natale, Phenomenological tests for the freezing of the QCD running coupling constant, Int. J. Mod. Phys. A 19, 249 (2004)
https://doi.org/10.1142/S0217751X0401701X
4 D. Binosi, Lei Chang, J. Papavassiliou, and C. D. Roberts, Bridging a gap between continuum-QCD and ab initiopredictions of hadron observables, Phys. Lett. B 742, 183 (2015), arXiv: 1412.4782 [nucl-th]
https://doi.org/10.1016/j.physletb.2015.01.031
5 I. C. Cloet and C. D. Roberts, Explanation and prediction of observables using continuum strong QCD, Prog. Part. Nucl. Phys. 77, 1 (2014), arXiv: 1310.2651 [nucl-th]
https://doi.org/10.1016/j.ppnp.2014.02.001
6 C. D. Roberts, Hadron physics and QCD: Just the basic facts, in: 37th BrazilianWorkshop on Nuclear Physics Maresias, São Paulo, Brazil, September 8–12, 2014 (2015), arXiv: 1501.06581 [nucl-th]
7 R. Jackiw and K. Johnson, Dynamical model of spontaneously broken gauge symmetries, Phys. Rev. D 8, 2386 (1973)
https://doi.org/10.1103/PhysRevD.8.2386
8 R. Jackiw, Dynamical symmetry breaking, in: Erice, Proceedings, Laws of Hadronic Matter, New York, 1975, 225–251 and MIT Cambridge- COO-3069-190 (73, REC.AUG 74), 1973, p. 23
9 J. M. Cornwall and R. E. Norton, Spontaneous symmetry breaking without scalar mesons, Phys. Rev. D 8, 3338 (1973)
https://doi.org/10.1103/PhysRevD.8.3338
10 E. Eichten and F. Feinberg, Dynamical symmetry breaking of nonAbelian gauge symmetries, Phys. Rev. D 10, 3254 (1974)
https://doi.org/10.1103/PhysRevD.10.3254
11 E. C. Poggio, E. Tomboulis, and S. H. H. Tye, Dynamical symmetry breaking in non-Abelian field theories, Phys. Rev. D 11, 2839 (1975)
https://doi.org/10.1103/PhysRevD.11.2839
12 C. W. Bernard, Adjoint Wilson lines and the effective gluon mass, Nucl. Phys. B 219, 341 (1983)
https://doi.org/10.1016/0550-3213(83)90645-4
13 J. F. Donoghue, The gluon “mass” in the bag model, Phys. Rev. D 29, 2559 (1984)
https://doi.org/10.1103/PhysRevD.29.2559
14 I. L. Bogolubsky, E. M. Ilgenfritz, M. Muller-Preussker, and A. Sternbeck, Lattice gluodynamics computation of Landau gauge Green’s functions in the deep infrared, Phys. Lett. B 676, 69 (2009), arXiv: 0901.0736 [hep-lat]
https://doi.org/10.1016/j.physletb.2009.04.076
15 I. L. Bogolubsky, E. M. Ilgenfritz, M. Muller-Preussker, and A. Sternbeck, The Landau gauge gluon and ghost propagators in 4D SU(3) gluodynamics in large lattice volumes, arXiv: 0710.1968 [hep-lat]
16 P. O. Bowman, , Scaling behavior and positivity violation of the gluon propagator in full QCD, Phys. Rev. D 76, 094505 (2007), arXiv: hep-lat/0703022
https://doi.org/10.1103/PhysRevD.76.094505
17 O. Oliveira and P. J. Silva, The Lattice infrared Landau gauge gluon propagator: The infinite volume limit, PoS LAT 2009, 226 (2009), arXiv: 0910.2897 [hep-lat]
18 A. Cucchieri and T. Mendes, What’s up with IR gluon and ghost propagators in Landau gauge? A puzzling answer from huge lattices, PoS LAT 2007, 297 (2007), arXiv: 0710.0412 [hep-lat]
19 A. Cucchieri and T. Mendes, Constraints on the IR behavior of the gluon propagator in Yang–Mills theories, Phys. Rev. Lett. 100, 241601 (2008), arXiv: 0712.3517 [hep-lat]
https://doi.org/10.1103/PhysRevLett.100.241601
20 A. Cucchieri and T. Mendes, Landau-gauge propagators in Yang–Mills theories at beta= 0: Massive solution versus conformal scaling, Phys. Rev. D 81, 016005 (2010), arXiv: 0904.4033 [hep-lat]
https://doi.org/10.1103/PhysRevD.81.016005
21 A. Cucchieri and T. Mendes, Numerical test of the Gribov– Zwanziger scenario in Landau gauge, PoS QCD-TNT 09, 026 (2009), arXiv: 1001.2584 [hep-lat]
22 A. C. Aguilar, D. Binosi, and J. Papavassiliou, Gluon and ghost propagators in the Landau gauge: Deriving lattice results from Schwinger–Dyson equations, Phys. Rev. D 78, 025010 (2008), arXiv: 0802.1870 [hep-ph]
https://doi.org/10.1103/PhysRevD.78.025010
23 A. P. Szczepaniak and E. S. Swanson, Coulomb gauge QCD, confinement, and the constituent representation, Phys. Rev. D 65, 025012 (2002), arXiv: hep-ph/0107078 [hep-ph]
https://doi.org/10.1103/PhysRevD.65.025012
24 P. Maris and C. D. Roberts, Dyson–Schwinger equations: A Tool for hadron physics, Int. J. Mod. Phys. E12, 297 (2003), arXiv: nucl-th/0301049 [nucl-th]
https://doi.org/10.1142/S0218301303001326
25 A. P. Szczepaniak, Confinement and gluon propagator in Coulomb gauge QCD, Phys. Rev. D 69, 074031 (2004), arXiv: hep-ph/0306030 [hep-ph]
https://doi.org/10.1103/PhysRevD.69.074031
26 A. C. Aguilar and A. A. Natale, A dynamical gluon mass solution in a coupled system of the Schwinger–Dyson equations, J. High Energy Phys. 08, 057 (2004), arXiv: hepph/0408254
27 K.-I. Kondo, Gauge-invariant gluon mass, infrared Abelian dominance and stability of magnetic vacuum, Phys. Rev. D74, 125003 (2006), arXiv: hep-th/0609166
https://doi.org/10.1103/PhysRevD.74.125003
28 J. Braun, H. Gies, and J. M. Pawlowski, Quark confinement from color confinement, Phys. Lett. B 684, 262 (2010), arXiv: 0708.2413 [hep-th]
https://doi.org/10.1016/j.physletb.2010.01.009
29 D. Epple, H. Reinhardt, W. Schleifenbaum, and A. P. Szczepaniak, Subcritical solution of the Yang–Mills Schroedinger equation in the Coulomb gauge, Phys. Rev. D 77, 085007 (2008), arXiv: 0712.3694 [hep-th]
https://doi.org/10.1103/PhysRevD.77.085007
30 Ph. Boucaud, , On the IR behaviour of the Landaugauge ghost propagator, J. High Energy Phys. 06, 099 (2008), arXiv: 0803.2161 [hep-ph]
31 D. Dudal, J. A. Gracey, S. Paolo Sorella, N. Vandersickel, and H. Verschelde, A refinement of the Gribov–Zwanziger approach in the Landau gauge: Infrared propagators in harmony with the lattice results, Phys. Rev. D 78, 065047 (2008), arXiv: 0806.4348 [hepth]
https://doi.org/10.1103/PhysRevD.78.065047
32 C. S. Fischer, A. Maas, and J. M. Pawlowski, On the infrared behavior of Landau gauge Yang–Mills theory, Annals Phys. 324, 2408 (2009), arXiv: 0810.1987 [hep-ph]
https://doi.org/10.1016/j.aop.2009.07.009
33 A. P. Szczepaniak and Hrayr H. Matevosyan, A model for QCD ground state with magnetic disorder, Phys. Rev. D 81, 094007 (2010), arXiv: 1003.1901 [hep-ph]
https://doi.org/10.1103/PhysRevD.81.094007
34 P. Watson and H. Reinhardt, The Coulomb gauge ghost Dyson–Schwinger equation, Phys. Rev. D 82, 125010 (2010), arXiv: 1007.2583 [hep-th]
https://doi.org/10.1103/PhysRevD.82.125010
35 J. Rodriguez-Quintero, On the massive gluon propagator, the PT-BFM scheme and the lowmomentum behaviour of decoupling and scaling DSE solutions, J. High Energy Phys. 1101, 105 (2011), arXiv: 1005.4598 [hep-ph]
36 D. R. Campagnari, and H. Reinhardt, Non-Gaussian wave functionals in Coulomb gauge Yang–Mills theory, Phys. Rev. D 82, 105021 (2010), arXiv: 1009.4599 [hep-th]
https://doi.org/10.1103/PhysRevD.82.105021
37 M. Tissier and N. Wschebor, Infrared propagators of Yang– Mills theory from perturbation theory, Phys. Rev. D 82, 101701 (2010), arXiv: 1004.1607 [hep-ph]
https://doi.org/10.1103/PhysRevD.82.101701
38 M. R. Pennington and D. J. Wilson, Are the dressed gluon and ghost propagators in the Landau gauge presently determined in the confinement regime of QCD? Phys. Rev. D 84, 119901 (2011), arXiv: 1109.2117 [hep-ph]
https://doi.org/10.1103/PhysRevD.84.119901
39 P. Watson and H. Reinhardt, Leading order infrared quantum chromodynamics in Coulomb gauge, Phys. Rev. D 85, 025014 (2012), arXiv: 1111.6078 [hep-ph]
https://doi.org/10.1103/PhysRevD.85.025014
40 K.-I. Kondo, A low-energy effective Yang–Mills theory for quark and gluon confinement, Phys. Rev. D 84, 061702 (2011), arXiv: 1103.3829 [hep-th]
https://doi.org/10.1103/PhysRevD.84.061702
41 F. Siringo, Gluon propagator in Feynman gauge by the method of stationary variance, Phys. Rev. D 90, 094021 (2014), arXiv: 1408.5313 [hep-ph]
https://doi.org/10.1103/PhysRevD.90.094021
42 J. S. Schwinger, Gauge invariance and mass, Phys. Rev. 125, 397 (1962)
https://doi.org/10.1103/PhysRev.125.397
43 J. S. Schwinger, Gauge invariance and mass (2), Phys. Rev. 128, 2425 (1962)
https://doi.org/10.1103/PhysRev.128.2425
44 Lectures given by J. P. at the Workshop Dyson–Schwinger Equations in Modern Mathematics and Physics, Trento, September 22–26, 2014
45 C. D. Roberts and A. G. Williams, Dyson–Schwinger equations and their application to hadronic physics, Prog. Part. Nucl. Phys. 33, 477 (1994), arXiv: hep-ph/9403224
https://doi.org/10.1016/0146-6410(94)90049-3
46 J. M. Cornwall and J. Papavassiliou, Gauge invariant three gluon vertex in QCD, Phys. Rev. D 40, 3474 (1989)
https://doi.org/10.1103/PhysRevD.40.3474
47 D. Binosi and J. Papavassiliou, The pinch technique to all orders, Phys. Rev. D 66, 111901(R) (2002), arXiv: hepph/ 0208189
48 D. Binosi and J. Papavassiliou, Pinch technique selfenergies and vertices to all orders in perturbation theory, J. Phys. G 30, 203 (2004), arXiv: hep-ph/0301096 [hep-ph]
https://doi.org/10.1088/0954-3899/30/2/017
49 D. Binosi and J. Papavassiliou, Pinch technique: Theory and applications, Phys. Rep. 479, 1 (2009), arXiv: 0909.2536 [hep-ph]
https://doi.org/10.1016/j.physrep.2009.05.001
50 L. F. Abbott, The background field method beyond one loop, Nucl. Phys. B 185, 189 (1981)
https://doi.org/10.1016/0550-3213(81)90371-0
51 L. F. Abbott, Introduction to the background field method, Acta Phys. Polon. B 13, 33 (1982)
52 A. C. Aguilar and J. Papavassiliou, Gluon mass generation in the PT-BFM scheme, J. High Energy Phys. 12, 012 (2006), arXiv: hep-ph/0610040
53 D. Binosi and J. Papavassiliou, Gauge-invariant truncation scheme for the Schwinger–Dyson equations of QCD, Phys. Rev. D 77, 061702 (2008), arXiv: 0712.2707 [hep-ph]
https://doi.org/10.1103/PhysRevD.77.061702
54 D. Binosi and J. Papavassiliou, New Schwinger–Dyson equations for non-Abelian gauge theories, J. High Energy Phys. 0811, 063 (2008), arXiv: 0805.3994 [hep-ph]
55 A. C. Aguilar and J. Papavassiliou, Gluon mass generation without seagull divergences, Phys. Rev. D 81, 034003 (2010), arXiv: 0910.4142 [hep-ph]
https://doi.org/10.1103/PhysRevD.81.034003
56 A. C. Aguilar, D. Binosi, and J. Papavassiliou, The dynamical equation of the effective gluon mass, Phys. Rev. D 84, 085026 (2011), arXiv: 1107.3968 [hep-ph]
https://doi.org/10.1103/PhysRevD.84.085026
57 D. Binosi, D. Ibañez, and J. Papavassiliou, The all-order equation of the effective gluon mass, Phys. Rev. D 86, 085033 (2012), arXiv: 1208.1451 [hep-ph]
https://doi.org/10.1103/PhysRevD.86.085033
58 N. Nakanishi, Covariant quantization of the electromagnetic field in the landau gauge, Prog. Theor. Phys. 35, 1111 (1966)
https://doi.org/10.1143/PTP.35.1111
59 B. Lautrup, Canonical quantum electrodynamics in covariant gauges, Mat. Fys. Medd. Dan. Vid. Selsk. 35, 1 (1966)
60 C. Becchi, A. Rouet, and R. Stora, Renormalization of the Abelian Higgs–Kibble Model, Commun. Math. Phys. 42, 127 (1975)
https://doi.org/10.1007/BF01614158
61 I. V. Tyutin, Gauge invariance in field theory and statistical physics in operator formalism, LEBEDEV-75-39
62 K. Fujikawa, B. W. Lee, and A. I. Sanda, Generalized renormalizable gauge formulation of spontaneously broken gauge theories, Phys. Rev. D 6, 2923 (1972)
https://doi.org/10.1103/PhysRevD.6.2923
63 D. Binosi and A. Quadri, AntiBRST symmetry and background field method, Phys. Rev. D 88, 085036 (2013), arXiv: 1309.1021 [hep-th]
https://doi.org/10.1103/PhysRevD.88.085036
64 D. Binosi and J. Papavassiliou, Pinch technique and the Batalin–Vilkovisky formalism, Phys. Rev. D 66, 025024 (2002), arXiv: hep-ph/0204128 [hep-ph]
https://doi.org/10.1103/PhysRevD.66.025024
65 P. A. Grassi, Tobias Hurth, and Matthias Steinhauser, Practical algebraic renormalization, Ann. Phys. 288, 197 (2001), arXiv: hep-ph/9907426
https://doi.org/10.1006/aphy.2001.6117
66 J. S. Ball and T.-W.Chiu, Analytic properties of the vertex function in gauge theories (2), Phys. Rev. D 22, 2550 (1980)
https://doi.org/10.1103/PhysRevD.22.2550
67 M. Pelaez, M. Tissier, and N. Wschebor, Three-point correlation functions in Yang–Mills theory, Phys. Rev. D 88, 125003 (2013), arXiv: 1310.2594 [hep-th]
https://doi.org/10.1103/PhysRevD.88.125003
68 A. C. Aguilar, D. Binosi, D. Ibañez, and J. Papavassiliou, Effects of divergent ghost loops on the Green’s functions of QCD, Phys. Rev. D 89, 085008 (2014), arXiv: 1312.1212 [hep-ph]
https://doi.org/10.1103/PhysRevD.89.085008
69 G. Eichmann, R. Williams, R. Alkofer, and M. Vujinovic, The threegluon vertex in Landau gauge, Phys. Rev. D 89, 105014 (2014), arXiv: 1402.1365 [hep-ph]
https://doi.org/10.1103/PhysRevD.89.105014
70 A. Blum, M. Q. Huber, M. Mitter, and L. von Smekal, Gluonic three-point correlations in pure Landau gauge QCD, Phys. Rev. D 89, 061703 (2014), arXiv: 1401.0713 [hep-ph]
https://doi.org/10.1103/PhysRevD.89.061703
71 P. A. Grassi, T. Hurth, and A. Quadri, On the Landau background gauge fixing and the IR properties of YM Green functions, Phys. Rev. D 70, 105014 (2004), arXiv: hepth/0405104
72 A. C. Aguilar, D. Binosi, J. Papavassiliou, and J. Rodriguez- Quintero, Non-perturbative comparison of QCD effective charges, Phys. Rev. D 80, 085018 (2009), arXiv: 0906.2633 [hep-ph]
https://doi.org/10.1103/PhysRevD.80.085018
73 A. C. Aguilar, D. Binosi, and J. Papavassiliou, Indirect determination of the Kugo–Ojima function from lattice data, J. High Energy Phys. 0911, 066 (2009), arXiv: 0907.0153 [hep-ph]
74 A. C. Aguilar, D. Binosi, and J. Papavassiliou, QCD effective charges from lattice data, J. High Energy Phys. 1007, 002 (2010), arXiv: 1004.1105 [hep-ph]
75 D. Binosi and J. Papavassiliou, Gauge invariant Ansatz for a special three-gluon vertex, J. High Energy Phys. 1103, 121 (2011), arXiv: 1102.5662 [hep-ph]
https://doi.org/10.1007/JHEP03(2011)121
76 K. G. Wilson, Quantum field theory models in less than four-dimensions, Phys. Rev. D 7, 2911 (1973)
https://doi.org/10.1103/PhysRevD.7.2911
77 J. C. Collins, Renormalization: An Introduction to Renormalization, the Renormalization Group, and the Operator Product Expansion, 1984
78 A. C. Aguilar, D. Ibanez, V. Mathieu, and J. Papavassiliou, Massless bound-state excitations and the Schwinger mechanism in QCD, Phys. Rev. D 85, 014018 (2012), arXiv: 1110.2633 [hep-ph]
https://doi.org/10.1103/PhysRevD.85.014018
79 D. Ibañez and J. Papavassiliou, Gluon mass generation in the massless bound-state formalism, Phys. Rev. D 87, 034008 (2013), arXiv: 1211.5314 [hep-ph]
https://doi.org/10.1103/PhysRevD.87.034008
80 A. C. Aguilar, D. Binosi, and J. Papavassiliou, Renormalization group analysis of the gluon mass equation, Phys. Rev. D 89, 085032 (2014), arXiv: 1401.3631 [hep-ph]
https://doi.org/10.1103/PhysRevD.89.085032
81 D. Binosi, D. Ibañez, and J. Papavassiliou, Nonperturbative study of the four gluon vertex, J. High Energy Phys. 1409, 059 (2014), arXiv: 1407.3677 [hep-ph]
82 A. K. Cyrol, Markus Q. Huber, and Lorenz von Smekal, A Dyson–Schwinger study of the four-gluon vertex, Eur. Phys. J. C 75, 102 (2015), arXiv: 1408.5409 [hep-ph]
https://doi.org/10.1140/epjc/s10052-015-3312-1
83 J. M. Cornwall and Wei-Shu Hou, Extension of the gauge technique to broken symmetry and finite temperature, Phys. Rev. D 34, 585 (1986)
https://doi.org/10.1103/PhysRevD.34.585
84 M. Lavelle, Gauge invariant effective gluon mass from the operator product expansion, Phys. Rev. D 44, 26 (1991)
https://doi.org/10.1103/PhysRevD.44.R26
85 A. C. Aguilar and J. Papavassiliou, Power-law running of the effective gluon mass, Eur. Phys. J. A 35, 189 (2008), arXiv: 0708.4320 [hep-ph]
https://doi.org/10.1140/epja/i2008-10535-4
86 M. J. Lavelle and M. Schaden, Propagators and condensates in QCD, Phys. Lett. B 208, 297 (1988)
https://doi.org/10.1016/0370-2693(88)90433-9
87 E. Bagan and T. G. Steele, QCD condensates and the Slavnov–Taylor identities, Phys. Lett. B 219, 497 (1989)
https://doi.org/10.1016/0370-2693(89)91101-5
88 S. J. Brodsky, C. D. Roberts, R. Shrock, and P. C. Tandy, Essence of the vacuum quark condensate, Phys. Rev. C 82, 022201 (2010), arXiv: 1005.4610 [nucl-th]
https://doi.org/10.1103/PhysRevC.82.022201
89 L. Del Debbio, M. Faber, J. Greensite, and S. Olejnik, Center dominance and Z(2) vortices in SU(2) lattice gauge theory, Phys. Rev. D 55, 2298 (1997), arXiv: hep-lat/9610005 [hep-lat]
https://doi.org/10.1103/PhysRevD.55.2298
90 K. Langfeld, H. Reinhardt, and J. Gattnar, Gluon propagators and quark confinement, Nucl. Phys. B 621, 131 (2002), arXiv: hep-ph/0107141 [hep-ph]
https://doi.org/10.1016/S0550-3213(01)00574-0
91 See, for example, J. Greensite, The confinement problem in lattice gauge theory, Prog. Theor. Phys. Suppl. 1 (2003), and references therein
https://doi.org/10.1016/s0146-6410(03)90012-3
92 J. Gattnar, K. Langfeld, and H. Reinhardt, Signals of con nement in Green functions of SU(2) Yang–Mills theory, Phys. Rev. Lett. 93, 061601 (2004), arXiv: hep-lat/0403011
https://doi.org/10.1103/PhysRevLett.93.061601
93 J. Greensite, H. Matevosyan, S. Olejnik, M. Quandt, H. Reinhardt, et al., Testing Proposals for the Yang–Mills Vacuum Wavefunctional by Measurement of the Vacuum, Phys. Rev. D 83, 114509 (2011), arXiv: 1102.3941 [hep-lat]
https://doi.org/10.1103/PhysRevD.83.114509
94 A. Ayala, A. Bashir, D. Binosi, M. Cristoforetti, and J. Rodriguez-Quintero, Quark avour effects on gluon and ghost propagators, Phys. Rev. D 86, 074512 (2012), arXiv: 1208.0795 [hep-ph]
https://doi.org/10.1103/PhysRevD.86.074512
95 A. C. Aguilar, D. Binosi, and J. Papavassiliou, Unquenching the gluon propagator with Schwinger–Dyson equations, Phys. Rev. D 86, 014032 (2012), arXiv: 1204.3868 [hep-ph]
https://doi.org/10.1103/PhysRevD.86.014032
96 A. C. Aguilar, D. Binosi, and J. Papavassiliou, Gluon mass generation in the presence of dynamical quarks, Phys. Rev. D 88, 074010 (2013), arXiv: 1304.5936 [hep-ph]
https://doi.org/10.1103/PhysRevD.88.074010
97 P. Bicudo, D. Binosi, N. Cardoso, O. Oliveira, and P. J. Silva, The lattice gluon propagator in renormalizable ξgauges, arXiv: 1505.05897 [hep-lat]
98 A. C. Aguilar, D. Binosi, and J. Papavassiliou, Yang–Mills two-point functions in linear covariant gauges, Phys. Rev. D 91, 085014 (2015), arXiv: 1501.07150 [hep-ph]
99 M. Q. Huber, Gluon and ghost propagators in linear covariant gauges, Phys. Rev. D 91, 085018 (2015), arXiv: 1502.04057 [hep-ph]
100 F. Siringo, Second order gluon polarization for SU(N) theory in linear covariant gauge, arXiv: 1507.00122 [hep-ph]
101 M. A. L. Capri, D. Dudal, D. Fiorentini, M. S. Guimaraes, I. F. Justo, A. D. Pereira, B. W. Mintz, L. F. Palhares, R. F. Sobreiro, and S. P. Sorella, Exact nilpotent nonperturbative BRST symmetry for the Gribov–Zwanziger action in the linear covariant gauge, Phys. Rev. D 92, 045039 (2015), arXiv: 1506.06995 [hep-th]
102 S. J. Brodsky and R. Shrock, Maximum wavelength of confined quarks and gluons and properties of quantum chromodynamics, Phys. Lett. B 666, 95 (2008), arXiv: 0806.1535 [hep-th]
https://doi.org/10.1016/j.physletb.2008.06.054
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed