Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2016, Vol. 11 Issue (2): 114401   https://doi.org/10.1007/s11467-015-0548-z
  本期目录
Interface-facilitated energy transport in coupled Frenkel–Kontorova chains
Rui-Xia Su1,Zong-Qiang Yuan2,Jun Wang3,*(),Zhi-Gang Zheng4,*()
1. Department of Physics and the Beijing–Hong Kong–Singapore Joint Centre for Nonlinear and Complex Systems (Beijing), Beijing Normal University, Beijing 100875, China
2. Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China
3. Key Laboratory of Enhanced Heat Transfer and Energy Conservation (Ministry of Education), College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China
4. College of Information Science and Engineering, Huaqiao University, Xiamen 361021, China
 全文: PDF(415 KB)  
Abstract

The role of interface couplings on the energy transport of two coupled Frenkel–Kontorova (FK) chains is explored through numerical simulations. In general, it is expected that the interface couplings result in the suppression of heat conduction through the coupled system due to the additional interface phonon–phonon scattering. In the present paper, it is found that the thermal conductivity increases with increasing intensity of interface interactions for weak inter-chain couplings, whereas the heat conduction is suppressed by the interface interaction in the case of strong inter-chain couplings. Based on the phonon spectral energy density method, we demonstrate that the enhancement of energy transport results from the excited phonon modes (in addition to the intrinsic phonon modes), while the strong interface phonon–phonon scattering results in the suppressed energy transport.

Key wordsinterface couplings    energy transport    heat conduction    phonon-phonon scattering    Frenkel–Kontorova (FK) chains    excited phonon modes    phonon spectral energy density
收稿日期: 2015-11-25      出版日期: 2016-04-29
Corresponding Author(s): Jun Wang,Zhi-Gang Zheng   
 引用本文:   
. [J]. Frontiers of Physics, 2016, 11(2): 114401.
Rui-Xia Su,Zong-Qiang Yuan,Jun Wang,Zhi-Gang Zheng. Interface-facilitated energy transport in coupled Frenkel–Kontorova chains. Front. Phys. , 2016, 11(2): 114401.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-015-0548-z
https://academic.hep.com.cn/fop/CN/Y2016/V11/I2/114401
1 A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, Enhanced thermoelectric performance of rough silicon nanowires, Nature 451(7175), 163 (2008)
https://doi.org/10.1038/nature06381
2 M. Losego, M. E. Grady, N. R. Sottos, D. G. Cahill, and P. V. Braun, Effects of chemical bonding on heat transport across interfaces, Nat. Mater. 11(6), 502 (2012)
https://doi.org/10.1038/nmat3303
3 C. Yan, J. Cho, and J. Ahn, Graphene-based flexible and stretchable thin film transistors, Nanoscale 4(16), 4870 (2012)
https://doi.org/10.1039/c2nr30994g
4 G. J. Hu and B. Y. Cao, Thermal resistance between crossed carbon nanotubes: Molecular dynamics simulations and analytical modeling, J. Appl. Phys. 14(22), 224308 (2013)
https://doi.org/10.1063/1.4842896
5 R. Guo and B. Huang, Approaching the alloy limit of thermal conductivity in single-crystalline Si-based thermoelectric nanocomposites: A molecular dynamics investigation, Sci. Rep. 5, 9579 (2015)
https://doi.org/10.1038/srep09579
6 R. Guo, X. Wang, and B. Huang, Thermal conductivity of skutterudite CoSb3 from first principles: Substitution and nanoengineering effects, Sci. Rep. 5, 7806 (2015)
https://doi.org/10.1038/srep07806
7 J. S. Wang, B. K. Agarwalla, H. Li, and J. Thingna, Nonequilibrium Green’s function method for quantum thermal transport, Front. Phys. 9(6), 673 (2014)
https://doi.org/10.1007/s11467-013-0340-x
8 N. P. Dasgupta and P. Yang, Semiconductor nanowires for photovoltaic and photoelectrochemical energy conversion, Front. Phys. 9(3), 289 (2014)
https://doi.org/10.1007/s11467-013-0305-0
9 S. Li, Y. F. Dong, D. D. Wang, W. Chen, L. Huang, C. W. Shi, and L. Q. Mai, Hierarchical nanowires for high-performance electrochemical energy storage, Front. Phys. 9(3), 303 (2014)
https://doi.org/10.1007/s11467-013-0343-7
10 N. Liu, W. Li, M. Pasta, and Y. Cui, Nanomaterials for electrochemical energy storage, Front. Phys. 9(3), 323 (2014)
https://doi.org/10.1007/s11467-013-0408-7
11 Z. Liu and B. Li, Heat conduction in simple networks: The effect of interchain coupling, Phys. Rev. E 76(5), 051118 (2007)
https://doi.org/10.1103/PhysRevE.76.051118
12 Z. Liu, X. Wu, H. Yang, N. Gupte, and B. Li, Heat flux distribution and rectification of complex networks, New J. Phys. 12(2), 023016 (2010)
https://doi.org/10.1088/1367-2630/12/2/023016
13 E. Scalise, M. Houssa, G. Pourtois, B. van den Broek, V. Afanas’ev, and A. Stesmans, Vibrational properties of silicene and germanene, Nano Res. 6(1), 19 (2013)
https://doi.org/10.1007/s12274-012-0277-3
14 H. P. Li and R. Q. Zhang, Vacancy-defect–induced diminution of thermal conductivity in silicene, Europhys. Lett. 99(3), 36001 (2012)
https://doi.org/10.1209/0295-5075/99/36001
15 Q. X. Pei, Y. W. Zhang, Z. D. Sha, and V. B. Shenoy, Tuning the thermal conductivity of silicene with tensile strain and isotopic doping: A molecular dynamics study, J. Appl. Phys. 114(3), 033526 (2013)
https://doi.org/10.1063/1.4815960
16 J. Shiomi and S. Maruyama, Molecular dynamics of diffusive-ballistic heat conduction in single-walled carbon nanotubes, Jpn. J. Appl. Phys. 47(4), 2005 (2008)
https://doi.org/10.1143/JJAP.47.2005
17 J. Hone, M. Whitney, C. Piskoti, and A. Zettl, Thermal conductivity of single-walled carbon nanotubes, Phys. Rev. B 59(4), R2514 (1999)
https://doi.org/10.1103/PhysRevB.59.R2514
18 S. Berber, Y. K. Kwon, and D. Tomanek, Unusually high thermal conductivity of carbon nanotubes, Phys. Rev. Lett. 84(20), 4613 (2000)
https://doi.org/10.1103/PhysRevLett.84.4613
19 J. Shiomi and S. Maruyama, Non-Fourier heat conduction in a single-walled carbon nanotube: Classical molecular dynamics simulations, Phys. Rev. B 73(20), 205420 (2006)
https://doi.org/10.1103/PhysRevB.73.205420
20 C. Yu, L. Shi, Z. Yao, D. Li, and A. Majumdar, Thermal conductance and thermopower of an individual single-wall carbon nanotube, Nano Lett. 5(9), 1842 (2005)
https://doi.org/10.1021/nl051044e
21 B. Y. Cao and Q. W. Hou, C. Bing-Yang, and H. Quan-Wen, Thermal conductivity of carbon nanotubes embedded in solids, Chin. Phys. Lett. 25(4), 1392 (2008)
https://doi.org/10.1088/0256-307X/25/4/062
22 A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, Superior thermal conductivity of single-layer graphene, Nano Lett. 8(3), 902 (2008)
https://doi.org/10.1021/nl0731872
23 A. A. Balandin, Thermal properties of graphene and nanostructured carbon materials, Nat. Mater. 10(8), 569 (2011)
https://doi.org/10.1038/nmat3064
24 D. L. Nika, E. P. Pokatilov, A. S. Askerov, and A. A. Balandin, Phonon thermal conduction in graphene: Role of Umklapp and edge roughness scattering, Phys. Rev. B 79(15), 155413 (2009)
https://doi.org/10.1103/PhysRevB.79.155413
25 K. Saito, J. Nakamura, and A. Natori, Ballistic thermal conductance of a graphene sheet, Phys. Rev. B 76(11), 115409 (2007)
https://doi.org/10.1103/PhysRevB.76.115409
26 Z. Q. Ye, B. Y. Cao, W. J. Yao, T. Feng, and X. Ruan, Spectral phonon thermal properties in graphene nanoribbons, Carbon 93, 915 (2015)
https://doi.org/10.1016/j.carbon.2015.06.008
27 R. Guo and B. Huang, Thermal transport in nanoporous Si: Anisotropy and junction effects, Int. J. Heat Mass Transfer 77, 131 (2014)
https://doi.org/10.1016/j.ijheatmasstransfer.2014.05.002
28 X. Yan, Y. Xiao, and Z. Li, Effects of intertube coupling and tube chirality on thermal transport of carbon nanotubes, J. Appl. Phys. 99(12), 124305 (2006)
https://doi.org/10.1063/1.2206851
29 D. Donadio and G. Galli, Thermal conductivity of isolated and interacting carbon nanotubes: Comparing results from molecular dynamics and the Boltzmann transport equation, Phys. Rev. Lett. 99(25), 255502 (2007)
https://doi.org/10.1103/PhysRevLett.99.255502
30 Z. Ong, E. Pop, and J. Shiomi, Reduction of phonon lifetimes and thermal conductivity of a carbon nanotube on amorphous silica, Phys. Rev. B 84(16), 165418 (2011)
https://doi.org/10.1103/PhysRevB.84.165418
31 Z. Guo, D. Zhang, and X. Gong, Manipulating thermal conductivity through substrate coupling, Phys. Rev. B 84(7), 075470 (2011)
https://doi.org/10.1103/PhysRevB.84.075470
32 Z. Ong and E. Pop, Effect of substrate modes on thermal transport in supported graphene, Phys. Rev. B 84(7), 075471 (2011)
https://doi.org/10.1103/PhysRevB.84.075471
33 X. Zhang, H. Bao, and M. Hu, Bilateral substrate effect on the thermal conductivity of two-dimensional silicon, Nanoscale 7(14), 6014 (2015)
https://doi.org/10.1039/C4NR06523A
34 J. Yang, Y. Yang, S. Waltermire, X. Wu, H. Zhang, T. Gutu, Y. Jiang, Y. Chen, A. Zinn, R. Prasher, T. Xu, and D. Li, Enhanced and switchable nanoscale thermal conduction due to van der Waals interfaces, Nat. Nanotechnol. 7(2), 91 (2012)
https://doi.org/10.1038/nnano.2011.216
35 O. Braun and Y. Kivshar, Nonlinear dynamics of the Frenkel–Kontorova model, Phys. Rep. 306(1), 1 (1998)
https://doi.org/10.1016/S0370-1573(98)00029-5
36 B. Hu and L. Yang, Heat conduction in the Frenkel–Kontorova model, Chaos 15(1), 015119 (2005)
https://doi.org/10.1063/1.1862552
37 L. Wang and B. Li, Thermal logic gates: Computation with phonons, Phys. Rev. Lett. 99(17), 177208 (2007)
https://doi.org/10.1103/PhysRevLett.99.177208
38 L. Wang and B. Li, Thermal memory: A storage of phononic information, Phys. Rev. Lett. 101(26), 267203 (2008)
https://doi.org/10.1103/PhysRevLett.101.267203
39 B. Hu, L. Yang, and Y. Zhang, Asymmetric heat conduction in nonlinear lattices, Phys. Rev. Lett. 97(12), 124302 (2006)
https://doi.org/10.1103/PhysRevLett.97.124302
40 J. Wang and Z. G. Zheng, Heat conduction and reversed thermal diode: The interface effect, Phys. Rev. E 81(1), 011114 (2010)
https://doi.org/10.1103/PhysRevE.81.011114
41 E. Díaz, R. Gutierrez, and G. Cuniberti, Heat transport and thermal rectification in molecular junctions: A minimal model approach,Phys. Rev. B 84(14), 144302 (2011)
https://doi.org/10.1103/PhysRevB.84.144302
42 B. Q. Ai and B. Hu, Heat conduction in deformable Frenkel–Kontorova lattices: Thermal conductivity and negative differential thermal resistance, Phys. Rev. E 83(1), 011131 (2011)
https://doi.org/10.1103/PhysRevE.83.011131
43 W. R. Zhong, Different thermal conductance of the inter- and intrachain interactions in a double-stranded molecular structure, Phys. Rev. E 81(6), 061131 (2010)
https://doi.org/10.1103/PhysRevE.81.061131
44 B. Hu, D. He, Y. Zhang, and L. Yang, Asymmetric heat conduction in the Frenkel–Kontorova model, Korean Phys. Soc. 50, 166 (2007)
https://doi.org/10.3938/jkps.50.166
45 D. He, B. Ai, H. K. Chan, and B. Hu, Heat conduction in the nonlinear response regime: Scaling, boundary jumps, and negative differential thermal resistance, Phys. Rev. E 81(4), 041131 (2010)
https://doi.org/10.1103/PhysRevE.81.041131
46 J. Tekić, D. He, and B. Hu, Noise effects in the ac-driven Frenkel–Kontorova model, Phys. Rev. E 79(3), 036604 (2009)
https://doi.org/10.1103/PhysRevE.79.036604
47 J. Thomas, J. E. Turney, R. Iutzi, C. Amon, and A. McGaughey, Predicting phonon dispersion relations and lifetimes from the spectral energy density, Phys. Rev. B 81(8), 081411 (2010)
https://doi.org/10.1103/PhysRevB.81.081411
48 L. Zhu and B. Li, Low thermal conductivity in ultrathin carbon nanotube (2, 1),Sci. Rep. 4, 4917 (2014)
https://doi.org/10.1038/srep04917
49 N. de Koker, Thermal conductivity of MgO periclase from equilibrium first principles molecular dynamics, Phys. Rev. Lett. 103(12), 125902 (2009)
https://doi.org/10.1103/PhysRevLett.103.125902
50 S. Nosé, A molecular dynamics method for simulations in the canonical ensemble, Mol. Phys. 52(2), 255 (1984)
https://doi.org/10.1080/00268978400101201
51 W. G. Hoover, Canonical dynamics: Equilibrium phase-space distributions, Phys. Rev. A 31(3), 1695 (1985)
https://doi.org/10.1103/PhysRevA.31.1695
52 W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes, Cambridge: Cambridge University Press, 1992
53 A. V. Savin and O. V. Gendelman, Heat conduction in one-dimensional lattices with on-site potential, Phys. Rev. E 67(4), 041205 (2003)
https://doi.org/10.1103/PhysRevE.67.041205
54 C. Giardiná, R. Livi, A. Politi, and M. Vassalli, Finite thermal conductivity in 1D lattices, Phys. Rev. Lett. 84(10), 2144 (2000)
https://doi.org/10.1103/PhysRevLett.84.2144
55 Q. W. Hou, B. Y. Cao, and Z. Y. Guo, Thermal conductivity of carbon nanotube: From ballistic to diffusive transport, Acta Physica Sinica 58(11), 7809 (2009) (in Chinese)
56 A. Jain, Y. J. Yu, and A. J. McGaughey, Phonon transport in periodic silicon nanoporous films with feature sizes greater than 100 nm, Phys. Rev. B 87(19), 195301 (2013)
https://doi.org/10.1103/PhysRevB.87.195301
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed