Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2016, Vol. 11 Issue (4): 119801   https://doi.org/10.1007/s11467-016-0557-6
  本期目录
Physical basis for the symmetries in the Friedmann–Robertson–Walker metric
Fulvio Melia()
Department of Physics, The Applied Math Program, and Department of Astronomy, The University of Arizona, Tucson, AZ 85721, USA
 全文: PDF(194 KB)  
Abstract

Modern cosmological theory is based on the Friedmann–Robertson–Walker (FRW) metric. Often written in terms of co-moving coordinates, this well-known solution to Einstein’s equations owes its elegant and highly practical formulation to the cosmological principle and Weyl’s postulate, upon which it is founded. However, there is physics behind such symmetries, and not all of it has yet been recognized. In this paper, we derive the FRW metric coefficients from the general form of the spherically symmetric line element and demonstrate that, because the co-moving frame also happens to be in free fall, the symmetries in FRW are valid only for a medium with zero active mass. In other words, the spacetime of a perfect fluid in cosmology may be correctly written as FRW only when its equation of state is ρ+3p = 0, in terms of the total pressure p and total energy density ρ. There is now compelling observational support for this conclusion, including the Alcock–Paczyński test, which shows that only an FRW cosmology with zero active mass is consistent with the latest model-independent baryon acoustic oscillation data.

Key wordscosmological parameters    cosmological observations    cosmological theory    gravitation
收稿日期: 2015-08-29      出版日期: 2016-06-08
Corresponding Author(s): Fulvio Melia   
 引用本文:   
. [J]. Frontiers of Physics, 2016, 11(4): 119801.
Fulvio Melia. Physical basis for the symmetries in the Friedmann–Robertson–Walker metric. Front. Phys. , 2016, 11(4): 119801.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-016-0557-6
https://academic.hep.com.cn/fop/CN/Y2016/V11/I4/119801
1 J. R. Oppenheimer and H. Snyder, On continued gravitational contraction, Phys. Rev. 56(5), 455 (1939)
https://doi.org/10.1103/PhysRev.56.455
2 G. C. McVittie, Gravitational collapse to a small volume, Astrophys. J. 140, 401 (1964)
https://doi.org/10.1086/147937
3 C. W. Misner and D. H. Sharp, Relativistic equations for adiabatic, spherically symmetric gravitational collapse, Phys. Rev. 136(2B), B571 (1964)
https://doi.org/10.1103/PhysRev.136.B571
4 I. H. Thompson and G. F. Whitrow, Time-dependent internal solutions for spherically symmetrical bodies in general relativity (I): Adiabatic collapse, Mon. Not. R. Astron. Soc. 136(2), 207 (1967)
https://doi.org/10.1093/mnras/136.2.207
5 G. Birkhoff, Relativity and Modern Physics, Harvard University Press, 1923
6 H. P. Robertson, On the foundations of relativistic cosmology, Proc. Natl. Acad. Sci. USA 15(11), 822 (1929)
https://doi.org/10.1073/pnas.15.11.822
7 S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity, Wiley, 1972
8 F. Melia, The cosmic horizon, Mon. Not. R. Astron. Soc. 382(4), 1917 (2007)
https://doi.org/10.1111/j.1365-2966.2007.12499.x
9 D. H. Weinberg, M. J. Mortonson, D. J. Eisenstein, C. Hirata, A. G. Riess, and E. Rozo, Observational probes of cosmic acceleration, Phys. Rep. 530(2), 87 (2013)
https://doi.org/10.1016/j.physrep.2013.05.001
10 S. Perlmutter, G.Aldering, G. Goldhaber, R. A. Knop, P. Nugent, P. G. Castro, S. Deustua, S. Fabbro, A. Goobar, D. E. Groom, I. M. Hook, A. G. Kim, M. Y. Kim, J. C. Lee, N. J. Nunes, R. Pain, C. R. Pennypacker, R. Quimby, C. Lidman, R. S. Ellis, M. Irwin, R. G. McMahon, P. Ruiz-Lapuente, N. Walton, B. Schaefer, B. J. Boyle, A. V. Filippenko, T. Matheson, A. S. Fruchter, N. Panagia, H. J. M. Newberg, W. J. Couch, and T. S. C. Project, Measurements of W and L from 42 high-redshift supernovae, Astrophys. J. 517(2), 565 (1999)
https://doi.org/10.1086/307221
11 A. G. Riess, A. V. Filippenko, P.Challis, A. Clocchiatti, A. Diercks, P. M. Garnavich, R. L. Gilliland, C. J. Hogan, S. Jha, R. P. Kirshner, B. Leibundgut, M. M. Phillips, D. Reiss, B. P. Schmidt, R. A. Schommer, R. C. Smith, J. Spyromilio, C. Stubbs, N. B. Suntzeff, and J. Tonry, Observational evidence from supernovae for an accelerating universe and a cosmological constant, Astron. J. 116(3), 1009 (1998)
https://doi.org/10.1086/300499
12 M. Kowalski, D.Rubin, G. Aldering, R. J. Agostinho, A. Amadon, , Improved cosmological constraints from new, old, and combined supernova data sets, Astrophys. J. 686(2), 749 (2008)
https://doi.org/10.1086/589937
13 N. Suzuki, D. Rubin, C. Lidman, G. Aldering, R. Amanullah, , The Hubble space telescope cluster supernova survey (v): Improving the dark-energy constraints above z>1 and building an early-type-hosted supernova sample, Astrophys. J. 746(1), 85 (2012)
https://doi.org/10.1088/0004-637X/746/1/85
14 C. L. Bennett, R. S. Hill, G. Hinshaw, M. R. Nolta, N. Odegard, L. Page, D. N. Spergel, J. L. Weiland, E. L. Wright, M. Halpern, N. Jarosik, A. Kogut, M. Limon, S. S. Meyer, G. S. Tucker, and E. Wollack, First-Year Wilkinson Microwave Anisotropy Probe (WMAP)Observations: Foreground emission, Astrophys. J. Suppl. 148(1), 97 (2003)
https://doi.org/10.1086/377252
15 D. N. Spergel, L. Verde, H. V. Peiris, E. Komatsu, M. R. Nolta, C. L. Bennett, M. Halpern, G. Hinshaw, N. Jarosik, A. Kogut, M. Limon, S. S. Meyer, L. Page, G. S. Tucker, J. L. Weiland, E. Wollack, and E. L. Wright, First-Year Wilkinson Microwave Anisotropy Probe (WMAP)Observations: Determination of cosmological parameters, Astrophys. J. Suppl. 148(1), 175 (2003)
https://doi.org/10.1086/377226
16 P. A. R. Ade, (Planck Collaboration), Planck 2013 results (XXIII): Isotropy and statistics of the CMB, Astron. Astrophys. 571, A23 (2014)
https://doi.org/10.1051/0004-6361/201321534
17 W. C. Hernandez and C. W. Misner, Observer time as a coordinate in relativistic spherical hydrodynamics, Astrophys. J. 143, 452 (1966)
https://doi.org/10.1086/148525
18 M. M. May and R. H. White, Hydrodynamic calculations of general-relativistic collapse, Phys. Rev. 141(4), 1232 (1966)
https://doi.org/10.1103/PhysRev.141.1232
19 R. C. Tolman, Static solutions of Einstein’s field equations for spheres of fluid, Phys. Rev. 55(4), 364 (1939)
https://doi.org/10.1103/PhysRev.55.364
20 J. R. Oppenheimer and G. M. Volkoff, On massive neutron cores, Phys. Rev. 55(4), 374 (1939)
https://doi.org/10.1103/PhysRev.55.374
21 H. Stephani, D. Kramer, M. MacCallum, and C. Hoenselaers, Exact Solutions to Einstein’s Field Equations, Cambridge University Press, 2009
22 F. Melia and M. Abdelqader, The cosmological spacetime, Int. J. Mod. Phys. D 18(12), 1889 (2009)
https://doi.org/10.1142/S0218271809015746
23 F. Melia and A. Shevchuk, The Rh= ct universe, Mon. Not. R. Astron. Soc. 419(3), 2579 (2011)
https://doi.org/10.1111/j.1365-2966.2011.19906.x
24 R. Jimenez and A. Loeb, Constraining cosmological parameters based on relative galaxy ages, Astrophys. J. 573(1), 37 (2002)
https://doi.org/10.1086/340549
25 F. Melia and R. S. Maier, Cosmic chronometers in the Rh= ctuniverse, Mon. Not. R. Astron. Soc. 432(4), 2669 (2013)
https://doi.org/10.1093/mnras/stt596
26 B. E. Schaefer, Gamma-ray burst Hubble diagram to z= 4.5, Astrophys. J. 583(2), L67 (2003)
https://doi.org/10.1086/368104
27 G. Ghirlanda, G. Ghisellini, and D. Lazzati, The collimation-corrected gamma-ray burst energies correlate with the peak energy of their vFv spectrum, Astrophys. J. 616(1), 331 (2004)
https://doi.org/10.1086/424913
28 E. Liang and B. Zhang, Model-independent multivariable gamma-ray burst luminosity indicator and its possible cosmological implications, Astrophys. J. 633(2), 611 (2005)
https://doi.org/10.1086/491594
29 J. J. Wei, X. F. Wu, and F. Melia, The gamma-ray burst Hubble diagram and its implications for cosmology, Astrophys. J. 772(1), 43 (2013)
https://doi.org/10.1088/0004-637X/772/1/43
30 F. Melia, High-z quasars in the Rh= ct universe, Astrophys. J. 764(1), 72 (2013)
https://doi.org/10.1088/0004-637X/764/1/72
31 J. J. Wei, X. F. Wu, F. Melia, and R. S. Maier, A comparative analysis of the supernova legacy survey sample with ∧CDM and the Rh= ct universe, Astron. J. 149(3), 102 (2015)
https://doi.org/10.1088/0004-6256/149/3/102
32 A. Font-Ribera, D. Kirkby, N. Busca, J. Miralda-Escudé, N. P. Ross, , Quasar-Lyman α forest cross-correlation from BOSS DR11: Baryon acoustic oscillations, J. Cosmol. Astropart. Phys. 05, 027 (2014)
33 T. Delubac, J. E. Bautista, N. G. Busca, J. Rich, D. Kirkby, , Astronomy & Astrophysics, Baryon Acoustic Oscillations in the Ly forest of BOSS DR11 quasars, Astron. Astrophys. 574, A59 (2015), arXiv: 1404.1801
https://doi.org/10.1051/0004-6361/201423969
34 F. Melia and M. L. Corredoira, Alcock-Paczynski test with model-independent BAO Data, Astrophys. J. 2015 (submitted), arXiv: 1503.05052
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed