Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2016, Vol. 11 Issue (5): 113101   https://doi.org/10.1007/s11467-016-0559-4
  本期目录
Hydrogen storage in Li-doped fullerene-intercalated hexagonal boron nitrogen layers
Yi-Han Cheng1,Chuan-Yu Zhang1,*(),Juan Ren2,Kai-Yu Tong1
1. Physics Department, Chengdu University of Technology, Chengdu 610059, China
2. School of Science, Xi’an Technological University, Xi’an 710032, China
 全文: PDF(602 KB)  
Abstract

New materials for hydrogen storage of Li-doped fullerene (C20, C28, C36, C50, C60, C70)-intercalated hexagonal boron nitrogen (h-BN) frameworks were designed by using density functional theory (DFT) calculations. First-principles molecular dynamics (MD) simulations showed that the structures of the Cn-BN (n= 20, 28, 36, 50, 60, and 70) frameworks were stable at room temperature. The interlayer distance of the h-BN layers was expanded to 9.96–13.59˚A by the intercalated fullerenes. The hydrogen storage capacities of these three-dimensional (3D) frameworks were studied using grand canonical Monte Carlo (GCMC) simulations. The GCMC results revealed that at 77 K and 100 bar (10 MPa), the C50-BN framework exhibited the highest gravimetric hydrogen uptake of 6.86 wt% and volumetric hydrogen uptake of 58.01 g/L. Thus, the hydrogen uptake of the Li-doped Cn-intercalated h-BN frameworks was nearly double that of the non-doped framework at room temperature. Furthermore, the isosteric heats of adsorption were in the range of 10–21 kJ/mol, values that are suitable for adsorbing/desorbing the hydrogen molecules at room temperature. At 193 K (–80 ?C) and 100 bar for the Li-doped C50-BN framework, the gravimetric and volumetric uptakes of H2 reached 3.72 wt% and 30.08 g/L, respectively.

Key wordshydrogen storage    boron nitrogen    doping    first-principles    grand canonical Monte Carlo
收稿日期: 2015-09-09      出版日期: 2016-06-08
Corresponding Author(s): Chuan-Yu Zhang   
 引用本文:   
. [J]. Frontiers of Physics, 2016, 11(5): 113101.
Yi-Han Cheng,Chuan-Yu Zhang,Juan Ren,Kai-Yu Tong. Hydrogen storage in Li-doped fullerene-intercalated hexagonal boron nitrogen layers. Front. Phys. , 2016, 11(5): 113101.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-016-0559-4
https://academic.hep.com.cn/fop/CN/Y2016/V11/I5/113101
1 L. Schlapbach and A. Züttel, Hydrogen-storage materials for mobile applications, Nature 414(6861), 353 (2001)
https://doi.org/10.1038/35104634
2 J. A. Turner, A realizable renewable energy future, Science 285(5428), 687 (1999)
https://doi.org/10.1126/science.285.5428.687
3 J. A. Turner, Sustainable hydrogen production, Science 305(5686), 972 (2004)
https://doi.org/10.1126/science.1103197
4 A. W. C. van den Berg, and C. O. Arean, Materials for hydrogen storage: Current research trends and perspectives, Chem. Commun. 669(6), 668 (2008)
https://doi.org/10.1039/B712576N
5 M. Felderhoff, C. Weidenthaler, R. von Helmolt, and U. Eberle, Hydrogen storage: The remaining scientific and technological challenges, Phys. Chem. Chem. Phys. 9(21), 2643 (2007)
https://doi.org/10.1039/b701563c
6 H. M. El-Kaderi, J. R. Hunt, J. L. Mendoza-Cortes, A. P. Côté, R. E. Taylor, M. O’Keeffe, and O. M. Yaghi, Designed synthesis of 3D covalent organic frameworks, Science 316(5822), 268 (2007)
https://doi.org/10.1126/science.1139915
7 J. L. Belof, A. C. Stern, M. Eddaoudi, and B. Space, On the mechanism of hydrogen storage in a metal-organic framework material, J. Am. Chem. Soc. 129(49), 15202 (2007)
https://doi.org/10.1021/ja0737164
8 S. S. Han, H. Furukawa, O. M. Yaghi, and W. A. Goddard, Covalent organic frameworks as exceptional hydrogen storage materials, J. Am. Chem. Soc. 130(35), 11580 (2008)
https://doi.org/10.1021/ja803247y
9 Z. Y. Zhong, Z. T. Xiong, L. F. Sun, J. Z. Luo, P. Chen, X. Wu, J. Lin, and K. L. Tan, Nanosized nickel (or cobalt)/graphite composites for hydrogen storage, J. Phys. Chem. B 106(37), 9507 (2002)
https://doi.org/10.1021/jp020151j
10 J. Jiang, R. Babarao, and Z. Hu, Molecular simulations for energy, environmental and pharmaceutical applications of nanoporous materials: From zeolites, metal–organic frameworks to protein crystals, Chem. Soc. Rev. 40(7), 3599 (2011)
https://doi.org/10.1039/c0cs00128g
11 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, and S. V. Dubonos, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)
https://doi.org/10.1126/science.1102896
12 M. D. Stoller, S. Park, Y. Zhu, J. An, and R. S. Ruoff, Graphene-based ultracapacitors, Nano Lett. 8(10), 3498 (2008)
https://doi.org/10.1021/nl802558y
13 J. Zhou, Q. Wang, Q. Sun, P. Jena, and X. S. Chen, Electric field enhanced hydrogen storage on polarizable materials substrates, Proc. Natl. Acad. Sci. USA 107(7), 2801 (2010)
https://doi.org/10.1073/pnas.0905571107
14 M. Khazaei, M. S. Bahramy, N. S. Venkataramanan, H. Mizuseki, and Y. Kawazoe, Chemical engineering of prehydrogenated C and BN-sheets by Li: Application in hydrogen storage, J. Appl. Phys. 106(9), 094303 (2009)
https://doi.org/10.1063/1.3247342
15 L. P. Zhang, P. Wu, and M. B. Sullivan, Hydrogen adsorption on Rh, Ni, and Pd functionalized single-walled boron nitride nanotubes, J. Phys. Chem. C 115(10), 4289 (2011)
https://doi.org/10.1021/jp1078554
16 M. Corso, W. Auwärter, M. Muntwiler, A. Tamai, T. Greber, and J. Osterwalder, Boron nitride nanomesh, Science 303(5655), 217 (2004)
https://doi.org/10.1126/science.1091979
17 K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, Two-dimensional atomic crystals, Proc. Natl. Acad. Sci. USA 102(30), 10451 (2005)
https://doi.org/10.1073/pnas.0502848102
18 A. Nag, K. Raidongia, K. P. S. S. Hembram, R. Datta, U. V. Waghmare, and C. N. R. Rao, Graphene analogues of BN: Novel synthesis and properties, ACS Nano 4(3), 1539 (2010)
https://doi.org/10.1021/nn9018762
19 J. D. Bernal, The structure of graphite, Proc. R. Soc. Lond. A 106(740), 749 (1924)
https://doi.org/10.1098/rspa.1924.0101
20 D. Chung, Review graphite, J. Mater. Sci. 37(8), 1475 (2002)
https://doi.org/10.1023/A:1014915307738
21 Y. Baskin and L. Meyer, Lattice constants of graphite at low temperatures, Phys. Rev. 100(2), 544 (1955)
https://doi.org/10.1103/PhysRev.100.544
22 V. L. Solozhenko, G. Will, and F. Elf, Isothermal compression of hexagonal graphite-like boron nitride up to 12 GPa, Solid State Commun. 96(1), 1 (1995)
https://doi.org/10.1016/0038-1098(95)00381-9
23 W. Paszkowicz, J. B. Pelka, M. Knapp, T. Szyszko, and S. Podsiadlo, Lattice parameters and anisotropic thermal expansion of hexagonal boron nitride in the 10–297.5 K temperature range, Appl. Phys. A 75(3), 431 (2002)
https://doi.org/10.1007/s003390100999
24 A. Marini, P. Garcia-Gonzalez, and A. Rubio, First-principles description of correlation effects in layered materials, Phys. Rev. Lett. 96(13), 136404 (2006)
https://doi.org/10.1103/PhysRevLett.96.136404
25 G. Kern, G. Kresse, and J. Hafner, Ab initio calculation of the lattice dynamics and phase diagram of boron nitride, Phys. Rev. B 59(13), 8551 (1999)
https://doi.org/10.1103/PhysRevB.59.8551
26 R. Pease, An X-ray study of boron nitride, Acta Crystallogr. 5(3), 356 (1952)
https://doi.org/10.1107/S0365110X52001064
27 Y. Shi, C. Hamsen, X. Jia, K. K. Kim, A. Reina, M. Hofmann, A. L. Hsu, K. Zhang, H. Li, Z.Y. Juang, M. S. Dresselhaus, L. J. Li, and J. Kong, Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition, Nano Lett. 10(10), 4134 (2010)
https://doi.org/10.1021/nl1023707
28 S. S. Han, H. S. Kim, K. S. Han, J. Y. Lee, H. M. Lee, J. K. Kang, S. I. Woo, A. C. T. van Duin, and W. A. Goddard, Nanopores of carbon nanotubes as practical hydrogen storage media, Appl. Phys. Lett. 87(21), 213113 (2005)
https://doi.org/10.1063/1.2133928
29 S. Patchkovskii, J. S. Tse, S. N. Yurchenko, L. Zhechkov, T. Heine, and G. Seifert, Graphene nanostructures as tunable storage media for molecular hydrogen, Proc. Natl. Acad. Sci. U.S.A. 102(30), 10439 (2005)
https://doi.org/10.1073/pnas.0501030102
30 W. Q. Deng, X. Xu, and Goddard, New alkali doped pillared carbon materials designed to achieve practical reversible hydrogen storage for transportation, Phys. Rev. Lett. 92(16), 166103 (2004)
https://doi.org/10.1103/PhysRevLett.92.166103
31 M. S. Fuhrer, J. G. Hou, X. D. Xiang, and A. Zettl, C60 intercalated graphite: Predictions and experiments, Solid State Commun. 90(6), 357 (1994)
https://doi.org/10.1016/0038-1098(94)90798-6
32 V. Gupta, P. Scharff, K. Risch, H. Romanus, and R. Müller, Synthesis of C60 intercalated graphite, Solid State Commun. 131(3-4), 153 (2004)
https://doi.org/10.1016/j.ssc.2004.05.018
33 A. Kuc, L. Zhechkov, S. Patchkovskii, G. Seifert, and T. Heine, Hydrogen sieving and storage in fullerene intercalated graphite, Nano Lett. 7(1), 1 (2007)
https://doi.org/10.1021/nl0619148
34 Y. Gogotsi, R. K. Dash, G. Yushin, T. Yildirim, G. Laudisio, and J. E. Fischer, Tailoring of nanoscale porosity in carbide-derived carbons for hydrogen storage, J. Am. Chem. Soc. 127(46), 16006 (2005)
https://doi.org/10.1021/ja0550529
35 S. S. Han and S. S. Jang, A hydrogen storage nanotank: Lithium-organic pillared graphite, Chem. Commun. 36(36), 5427 (2009)
https://doi.org/10.1039/b910823h
36 J. H. Guo, H. Zhang, and Y. Miyamoto, New Li-doped fullerene-intercalated phthalocyanine covalent organic frameworks designed for hydrogen storage, Phys. Chem. Chem. Phys. 15(21), 8199 (2013)
https://doi.org/10.1039/c3cp50492a
37 J. Ren, H. Zhang, and X. L. Cheng, Grand canonical Monte Carlo simulation of isotherm for hydrogen adsorption on nanoporous LiBH4, Comput. Mater. Sci. 71, 109 (2013)
https://doi.org/10.1016/j.commatsci.2013.01.005
38 J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation, Phys. Rev. B 46(11), 6671 (1992)
https://doi.org/10.1103/PhysRevB.46.6671
39 P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50(24), 17953 (1994)
https://doi.org/10.1103/PhysRevB.50.17953
40 G. Kresse and J. Hafner, Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements, J. Phys. Condens. Matter 6(40), 8245 (1994)
https://doi.org/10.1088/0953-8984/6/40/015
41 G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59(3), 1758 (1999)
https://doi.org/10.1103/PhysRevB.59.1758
42 S. Nosé, A molecular dynamics method for simulations in the canonical ensemble, Mol. Phys. 52(2), 255 (1984)
https://doi.org/10.1080/00268978400101201
43 D. Frenkel and B. Smit, Understanding Molecular Simulation, Computational Science Series, San Diego: Academic Press, 2002
44 A. Gupta, S. Chempath, M. J. Sanborn, L. A. Clark, and R. Q. Snurr, Object-oriented programming paradigms for molecular modeling, Mol. Simul. 29(1), 29 (2003)
https://doi.org/10.1080/0892702031000065719
45 S. L. Mayo, B. D. Olafson, and Goddard, Dreiding: A generic force field for molecular simulations, J. Phys. Chem. 94(26), 8897 (1990)
https://doi.org/10.1021/j100389a010
46 Q. Y. Yang and C. L. Zhong, Molecular simulation of adsorption and diffusion of hydrogen in metal-organic frameworks, J. Phys. Chem. B 109(24), 11862 (2005)
https://doi.org/10.1021/jp051903n
47 G. Garberoglio, A. I. Skoulidas, and J. K. Johnson, Adsorption of gases in metal organic materials: Comparison of simulations and experiments, J. Phys. Chem. B 109(27), 13094 (2005)
https://doi.org/10.1021/jp050948l
48 T. Düren, L. Sarkisov, O. M. Yaghi, and R. Q. Snurr, Design of new materials for methane storage, Langmuir 20(7), 2683 (2004)
https://doi.org/10.1021/la0355500
49 B. Assfour and G. Seifert, Adsorption of hydrogen in covalent organic frameworks: Comparison of simulations and experiments, Microporous Mesoporous Mater. 133(1-3), 59 (2010)
https://doi.org/10.1016/j.micromeso.2010.04.015
50 O. Talu and A. L. Myers, Molecular simulation of adsorption: Gibbs dividing surface and comparison with experiment, AIChE J. 47(5), 1160 (2001)
https://doi.org/10.1002/aic.690470521
51 H. Frost, T. Düren, and R. Q. Snurr, Effects of surface area, free volume, and heat of adsorption on hydrogen uptake in metal-organic frameworks, J. Phys. Chem. B 110(19), 9565 (2006)
https://doi.org/10.1021/jp060433+
52 R. Q. Snurr, A. T. Bell, and D. N. Theodorou, Prediction of adsorption of aromatic hydrocarbons in silicalite from grand canonical Monte Carlo simulations with biased insertions, J. Phys. Chem. 97(51), 13742 (1993)
https://doi.org/10.1021/j100153a051
53 H. Tanaka, J. Fan, H. Kanoh, H. Yudasaka, S. Iijima, and K. Kaneko, Quantum nature of adsorbed hydrogen on single-wall carbon nanohorns, Mol. Simul. 31(6-7), 465 (2005)
https://doi.org/10.1080/08927020412331337032
54 D. Levesque, A. Gicquel, F. L. Darkrim, and S. B. Kayiran, Monte Carlo simulations of hydrogen storage in carbon nanotubes, J. Phys. Condens. Matter 14(40), 9285 (2002)
https://doi.org/10.1088/0953-8984/14/40/318
55 P. Kowalczyk, H. Tanaka, R. Hołyst, K. Kaneko, T. Ohmori, and J. Miyamoto, Storage of hydrogen at 303 K in graphite slitlike pores from grand canonical Monte Carlo simulation, J. Phys. Chem. B 109(36), 17174 (2005)
https://doi.org/10.1021/jp0529063
56 B. Panella, M. Hirscher, H. Pütter, and U. Müller, Hydrogen adsorption in metal–organic frameworks: Cu-MOFs and Zn-MOFs compared, Adv. Funct. Mater. 16(4), 520 (2006)
https://doi.org/10.1002/adfm.200500561
57 Y. W. Li and R. T. Yang, Hydrogen storage in metal-organic frameworks by bridged hydrogen spillover, J. Am. Chem. Soc. 128(25), 8136 (2006)
https://doi.org/10.1021/ja061681m
58 L. J. Murray, M. Dincă, and J. R. Long, Hydrogen storage in metal–organic frameworks, Chem. Soc. Rev. 38(5), 1294 (2009)
https://doi.org/10.1039/b802256a
59 S. K. Bhatia and A. L. Myers, Optimum conditions for adsorptive storage, Langmuir 22(4), 1688 (2006)
https://doi.org/10.1021/la0523816
60 K. Srinivasu, K. R. S. Chandrakumar, and S. K. Ghosh, Quantum chemical studies on hydrogen adsorption in carbon-based model systems: role of charged surface and the electronic induction effect, Phys. Chem. Chem. Phys. 10(38), 5832 (2008)
https://doi.org/10.1039/b808327b
61 Q. Sun, Q. Wang, P. Jena, and Y. Kawazoe, Clustering of Ti on a C60 surface and its effect on hydrogen storage, J. Am. Chem. Soc. 127(42), 14582 (2005)
https://doi.org/10.1021/ja0550125
62 K. L. Mulfort and J. T. Hupp, Chemical reduction of metal-organic framework materials as a method to enhance gas uptake and binding, J. Am. Chem. Soc. 129(31), 9604 (2007)
https://doi.org/10.1021/ja0740364
63 D. Himsl, D. Wallacher, and M. Hartmann, Improving the hydrogen-adsorption properties of a hydroxy-modified MIL-53 (Al) structural analogue by lithium doping, Angew. Chem. Int. Ed. 48(25), 4639 (2009)
https://doi.org/10.1002/anie.200806203
64 Z. H. Xiang, Z. Hu, W. T. Yang, and D. P. Cao, Lithium doping on metal-organic frameworks for enhancing H2 storage, Int. J. Hydrogen Energy 37(1), 946 (2012)
https://doi.org/10.1016/j.ijhydene.2011.03.102
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed