Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2016, Vol. 11 Issue (5): 110502   https://doi.org/10.1007/s11467-016-0568-3
  本期目录
Photon condensation: A new paradigm for Bose–Einstein condensation
Renju Rajan,P. Ramesh Babu,K. Senthilnathan()
Department of Physics, School of Advanced Sciences, VIT University, Vellore, Tamil Nadu 632014, India
 全文: PDF(621 KB)  
Abstract

Bose–Einstein condensation is a state of matter known to be responsible for peculiar properties exhibited by superfluid Helium-4 and superconductors. Bose–Einstein condensate (BEC) in its pure form is realizable with alkali atoms under ultra-cold temperatures. In this paper, we review the experimental scheme that demonstrates the atomic Bose–Einstein condensate. We also elaborate on the theoretical framework for atomic Bose–Einstein condensation, which includes statistical mechanics and the Gross–Pitaevskii equation. As an extension, we discuss Bose–Einstein condensation of photons realized in a fluorescent dye filled optical microcavity. We analyze this phenomenon based on the generalized Planck’s law in statistical mechanics. Further, a comparison is made between photon condensate and laser. We describe how photon condensate may be a possible alternative for lasers since it does not require an energy consuming population inversion process.

Key wordsBose–Einstein condensation    photon condensation    magneto-optical trap    Gross–Pitaevskii equation    Planck’s radiation law
收稿日期: 2016-01-08      出版日期: 2016-06-08
Corresponding Author(s): K. Senthilnathan   
 引用本文:   
. [J]. Frontiers of Physics, 2016, 11(5): 110502.
Renju Rajan,P. Ramesh Babu,K. Senthilnathan. Photon condensation: A new paradigm for Bose–Einstein condensation. Front. Phys. , 2016, 11(5): 110502.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-016-0568-3
https://academic.hep.com.cn/fop/CN/Y2016/V11/I5/110502
1 F. W. Sears and G. L. Salinger, Thermodynamics, Kinetic Theory, and Statistical Thermodynamics, Philippines: Addison-Wesley, 1975
2 S. N. Bose, Planck's law and the light quantum hypothesis, Z. Phys. 26(1), 178 (1924)
https://doi.org/10.1007/BF01327326
3 A. Einstein, Quantum theory of the monoatomic ideal gas, Sitzungsber. Preuss. Akad. Wiss. 1, 3 (1925)
4 F. London, The ʌ-phenomenon of liquid helium and the Bose-Einstein degeneracy, Nature 141(3571), 643 (1938)
https://doi.org/10.1038/141643a0
5 L. D. Landau, Theory of the superfluidity of Helium II, Phys. Rev. 60(4), 356 (1941)
https://doi.org/10.1103/PhysRev.60.356
6 H. J. Metcalf and P. Van der Straten, Laser Cooling and Trapping, New York: Springer-Verlag, 1999
https://doi.org/10.1007/978-1-4612-1470-0
7 V. S. Letokhov, Laser Control of Atoms and Molecules, New York: Oxford University Press, 2007
8 C. J. Foot, Atomic Physics, New York: Oxford University Press, 2005
9 M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, Observation of bose-einstein condensation in a dilute atomic vapor, Science 269(5221), 198 (1995)
https://doi.org/10.1126/science.269.5221.198 pmid: 17789847
10 K. B. Davis, M. Mewes, M. R. Andrews, D. S. Durfee, D. M. Kurn, W. Ketterle, and W. Ketterle, Bose-Einstein condensation in a gas of sodium atoms., Phys. Rev. Lett. 75(22), 3969 (1995)
https://doi.org/10.1103/PhysRevLett.75.3969 pmid: 10059782
11 S. Blundell, Magnetism in Condensed Matter, New York: Oxford University Press, 2001
12 Q. Chen and J. Wang, Pseudogap phenomena in ultracold atomic Fermi gases, Front. Phys. 9(5), 539 (2014)
https://doi.org/10.1007/s11467-014-0448-7
13 M. Fox, Quantum Optics: An Introduction, New York: Oxford University Press, 2006
14 W. D. Phillips, Laser cooling and trapping of neutral atoms, Rev. Mod. Phys. 70(3), 721 (1998)
https://doi.org/10.1103/RevModPhys.70.721
15 D. J. Wineland and W. M. Itano, Laser cooling of atoms, Phys. Rev. A 20(4), 1521 (1979)
https://doi.org/10.1103/PhysRevA.20.1521
16 A. L. Migdall, J. V. Prodan, W. D. Phillips, T. H. Bergeman, and H. J. Metcalf, First observation of magnetically trapped neutral atoms, Phys. Rev. Lett. 54(24), 2596 (1985)
https://doi.org/10.1103/PhysRevLett.54.2596 pmid: 10031386
17 C. G. Townsend, N. H. Edwards, C. J. Cooper, K. P. Zetie, C. J. Foot, A. M. Steane, P. Szriftgiser, H. Perrin, and J. Dalibard, Phase-space density in the magneto-optical trap, Phys. Rev., A 52(2), 1423 (1995)
https://doi.org/10.1103/PhysRevA.52.1423 pmid: 9912381
18 C. S. Adams, H. J. Lee, N. Davidson, M. Kasevich, and S. Chu, Evaporative cooling in a crossed dipole trap, Phys. Rev. Lett. 74(18), 3577 (1995)
https://doi.org/10.1103/PhysRevLett.74.3577 pmid: 10058240
19 P. D. Lett, W. D. Phillips, S. L. Rolston, C. E. Tanner, R. N. Watts, and C. I. Westbrook, Optical molasses, J. Opt. Soc. Am. B 6(11), 2084 (1989)
https://doi.org/10.1364/JOSAB.6.002084
20 W. Petrich, M. H. Anderson, J. R. Ensher, and E. A. Cornell, Stable, Tightly confining magnetic trap for evaporative cooling of neutral atoms, Phys. Rev. Lett. 74(17), 3352 (1995)
https://doi.org/10.1103/PhysRevLett.74.3352 pmid: 10058179
21 C. E. Wieman, D. E. Pritchard, and D. J. Wineland, Atom cooling, trapping, and quantum manipulation, Rev. Mod. Phys. 71(2), S253 (1999)
https://doi.org/10.1103/RevModPhys.71.S253
22 H. Wu, E. Arimondo, and C. J. Foot, Dynamics of evaporative cooling for Bose-Einstein condensation, Phys. Rev. A 56(1), 560 (1997)
https://doi.org/10.1103/PhysRevA.56.560
23 F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, Theory of Bose-Einstein condensation in trapped gases, Rev. Mod. Phys. 71(3), 463 (1999)
https://doi.org/10.1103/RevModPhys.71.463
24 V. M. Pérez-García, N. G. Berloff, P. G. Kevrekidis, V. V. Konotop, and B. A. Malomed, Nonlinear phenomena in degenerate quantum gases, Physica D 238(15), 1289 (2009)
https://doi.org/10.1016/j.physd.2009.05.001
25 I. Bloch, J. Dalibard, and W. Zwerger, Many-body physics with ultracold gases, Rev. Mod. Phys. 80(3), 885 (2008)
https://doi.org/10.1103/RevModPhys.80.885
26 S. S. Li, J. B. Yuan, and L. M. Kuang, Coherent manipulation of spin squeezing in atomic Bose-Einstein condensate via electromagnetically induced transparency, Front. Phys. 8(1), 27 (2013)
https://doi.org/10.1007/s11467-013-0288-x
27 J. F. Annett, Superconductivity, Superfluids and Condensates, New York: Oxford University Press, 2004
28 R. Camassa, J. M. Hyman, and B. P. Luce, Nonlinear waves and solitons in physical systems, Physica D 123(1-4), 1 (1998)
https://doi.org/10.1016/S0167-2789(98)00108-0
29 S. W. Song, L. Wen, C. F. Liu, S. C. Gou, and W. M. Liu, Ground states, solitons and spin textures in spin-1 Bose-Einstein condensates, Front. Phys. 8(3), 302 (2013)
https://doi.org/10.1007/s11467-013-0350-8
30 P. G. Kevrekidis, D. J. Frantzeskakis, and R. Carretero-González, Emergent Nonlinear Phenomena in Bose-Einstein Condensates: Theory and Experiment, Berlin: Springer-Verlag, 2008
https://doi.org/10.1007/978-3-540-73591-5
31 E. Hecht, Optics, 4th Ed., San Francisco: Addison-Wesley, 2002
32 E. Yablonovitch, Light emission in photonic crystal micro-cavities, in: Confined Electrons and Photons: New Physics and Applications, edited by E. Burstein and C. Weisbuch, New York: Springer Science & Business Media, 1995, pp. 635–646
https://doi.org/10.1007/978-1-4615-1963-8_20
33 J. Klaers, J. Schmitt, F. Vewinger, and M. Weitz, Bose-Einstein condensation of photons in an optical microcavity., Nature 468(7323), 545 (2010)
https://doi.org/10.1038/nature09567 pmid: 21107426
34 J. Klaers, J. Schmitt, T. Damm, F. Vewinger, and M. Weitz, Bose-Einstein condensation of paraxial light, Appl. Phys. B 105(1), 17 (2011)
https://doi.org/10.1007/s00340-011-4734-6
35 J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd Ed., New York: Springer, 2006
https://doi.org/10.1007/978-0-387-46312-4
36 B. I. Stepanov and L. P. Kazachenko, Universal relationship between absorption and emission spectra taking the solvent effect into account, J. Appl. Spectrosc. 14(5), 596 (1971)
https://doi.org/10.1007/BF00605796
37 J. Klaers, F. Vewinger, and M. Weitz, Thermalization of a two-dimensional photonic gas in a white wall photon box, Nat. Phys. 6(7), 512 (2010)
https://doi.org/10.1038/nphys1680
38 P. W. Milonni and J. H. Eberly, Laser Physics, New Jersey: John Wiley and Sons, 2010
39 W. T. Silfvast, Laser Fundamentals, 2nd Ed., Cambridge: Cambridge University Press, 2004
https://doi.org/10.1017/CBO9780511616426
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed