Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2016, Vol. 11 Issue (5): 110501-110501   https://doi.org/10.1007/s11467-016-0571-8
  本期目录
Study of spatial signal transduction in bistable switches
Qi Zhao (赵琪)1,2,*(),Cheng-Gui Yao (姚成贵)3,Jun Tang (唐军)4,Li-Wei Liu (刘立伟)5
1. School of Mathematics, Liaoning University, Shenyang 110036, China
2. Research Center for Computer Simulating and Information Processing of Bio-Macromolecules of Liaoning Province, Shenyang 110036, China
3. Department of Mathematics, Shaoxing University, Shaoxing 312000, China
4. College of Science, China University of Mining and Technology, Xuzhou 221008, China
5. College of Science, Dalian Jiaotong University, Dalian 116028, China
 全文: PDF(277 KB)  
Abstract

Bistable switch modules are among the most important fundamental motifs in signal-transduction pathways. To better understand their spatial signal transduction, we model the diffusion process in the one-dimensional (1–D) domain. We find that when none of the elements diffuse, the response of the system exhibits a spatial switch–like property. However, when one of the elements is highly diffusible, the response of the system does not show any spatial switching behavior. Furthermore, we observe that the spatial responses of the system are more sensitive to the time constant of the switch when none of the elements are diffusible. Further, a slow loop keeps the system in the high steady state more positions than that in the fast loop. Finally, we consolidate our numerical results analytically by performing a mathematical method.

Key wordssignal processing    reaction–diffusion model    nonlinear dynamics    spatial switch
收稿日期: 2015-07-28      出版日期: 2016-05-04
Corresponding Author(s): Qi Zhao (赵琪)   
 引用本文:   
. [J]. Frontiers of Physics, 2016, 11(5): 110501-110501.
Qi Zhao (赵琪),Cheng-Gui Yao (姚成贵),Jun Tang (唐军),Li-Wei Liu (刘立伟). Study of spatial signal transduction in bistable switches. Front. Phys. , 2016, 11(5): 110501-110501.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-016-0571-8
https://academic.hep.com.cn/fop/CN/Y2016/V11/I5/110501
1 B. D. Gomperts, I. M. Kramer, and P. E. R. Tatham, Signal Transduction, London: Academic Press, 2009
2 S. Liu, Z. W. He, and M. Zhan, Firing rates of coupled noisy excitable elements, Front. Phys. 9(1), 127 (2014)
https://doi.org/10.1007/s11467-013-0365-1
3 B. N. Kholodenko, Cell-signalling dynamics in time and space, Nat. Rev. Mol. Cell Biol. 7(3), 165 (2006)
pmid: 16482094
4 M. Freeman, Feedback control of intercellular signalling in development, Nature 408(6810), 313 (2000)
pmid: 11099031
5 J. E. Ferrell and W. Xiong, Bistability in cell signaling: How to make continuous processes discontinuous, and reversible processes irreversible, Chaos 11(1), 227 (2001)
pmid: 12779456
6 J. E. Jr Ferrell, Self-perpetuating states in signal transduction: Positive feedback, double-negative feedback and bistability, Curr. Opin. Cell Biol. 14(2), 140 (2002)
pmid: 11891111
7 N. I. Markevich, J. B. Hoek, and B. N. Kholodenko, Signaling switches and bistability arising from multisite phosphorylation in protein kinase cascades, J. Cell Biol. 164(3), 353 (2004)
pmid: 14744999
8 J. E. Jr Ferrell and E. M. Machleder, The biochemical basis of an all-or-none cell fate switch in Xenopus oocytes, Science 280(5365), 895 (1998)
pmid: 9572732
9 W. Xiong and J. E. Jr Ferrell, A positive-feedback-based bistable ‘memory module’ that governs a cell fate decision, Nature 426(6965), 460 (2003)
pmid: 14647386
10 A. Abrieu, M. Dorée, and D. Fisher, The interplay between cyclin-B-Cdc2 kinase (MPF) and MAP kinase during maturation of oocytes, J. Cell. Sci. 114(Pt 2), 257 (2001)
pmid: 11148128
11 R. Wedlich-Soldner, S. C. Wai, T. Schmidt, and R. Li, Robust cell polarity is a dynamic state established by coupling transport and GTPase signaling, J. Cell Biol. 166(6), 889 (2004)
pmid: 15353546
12 J. R. Pomerening, E. D. Sontag, and J. E. Jr Ferrell, Building a cell cycle oscillator: Hysteresis and bistability in the activation of Cdc2, Nat. Cell Biol. 5(4), 346 (2003)
pmid: 12629549
13 C. Y. Huang and J. E. Jr Ferrell, Ultrasensitivity in the mitogen-activated protein kinase cascade, Proc. Natl. Acad. Sci. USA 93(19), 10078 (1996)
pmid: 8816754
14 J. E. Jr Ferrell, How responses get more switch-like as you move down a protein kinase cascade, Trends Biochem. Sci. 22(8), 288 (1997)
pmid: 9270299
15 B. N. Kholodenko, Negative feedback and ultrasensitivity can bring about oscillations in the mitogen-activated protein kinase cascades, Eur. J. Biochem. 267(6), 1583 (2000)
pmid: 10712587
16 A. Vaknin and H. C. Berg, Single-cell FRET imaging of phosphatase activity in the Escherichia coli chemotaxis system, Proc. Natl. Acad. Sci. USA 101(49), 17072 (2004)
pmid: 15569922
17 P. Kalab, K. Weis, and R. Heald, Visualization of a Ran-GTP gradient in interphase and mitotic Xenopus egg extracts, Science 295(5564), 2452 (2002)
pmid: 11923538
18 P. Niethammer, P. Bastiaens, and E. Karsenti, Stathmin-tubulin interaction gradients in motile and mitotic cells, Science 303(5665), 1862 (2004)
pmid: 15031504
19 Q. Zhao, M. Yi, and Y. Liu, Spatial distribution and dose-response relationship for different operation modes in a reaction-diffusion model of the MAPK cascade, Phys. Biol. 8(5), 055004 (2011)
pmid: 21832801
20 M. Yi, Q. Zhao, J. Tang, and C. Wang, A theoretical modeling for frequency modulation of Ca2+ signal on activation of MAPK cascade, Biophys. Chem. 157(1-3), 33 (2011)
pmid: 21550710
21 R. Rappaport, Cytokinesis in animal cells, Int. Rev. Cytol. 31, 169 (1971)
pmid: 4400359
22 W. J. Nelson, Adaptation of core mechanisms to generate cell polarity, Nature 422(6933), 766 (2003)
pmid: 12700771
23 I. V. Maly, H. S. Wiley, and D. A. Lauffenburger, Self-organization of polarized cell signaling via autocrine circuits: computational model analysis, Biophys. J. 86(1 Pt 1), 10 (2004)
pmid: 14695245
24 A. S. Howell, N. S. Savage, S. A. Johnson, I. Bose, A. W. Wagner, T. R. Zyla, H. F. Nijhout, M. C. Reed, A. B. Goryachev, and D. J. Lew, Singularity in polarization: rewiring yeast cells to make two buds, Cell 139(4), 731 (2009)
pmid: 19914166
25 P. A. Fletcher, Y. X. Li, and M. D. Bootman, An integrated model of electrical spiking, bursting, and calcium oscillations in GnRH neurons, Biophys. J. 96(11), 4514 (2009)
pmid: 19486674
26 M. J. Berridge, P. Lipp, and M. D. Bootman, The versatility and universality of calcium signalling, Nat. Rev. Mol. Cell Biol. 1(1), 11 (2000)
pmid: 11413485
27 N. I. Markevich, M. A. Tsyganov, J. B. Hoek, and B. N. Kholodenko, Long-range signaling by phosphoprotein waves arising from bistability in protein kinase cascades, Mol. Syst. Biol. 2, 61 (2006)
pmid: 17102806
28 S. B. van Albada and P. R. ten Wolde, Enzyme localization can drastically affect signal amplification in signal transduction pathways, PLoS Comput. Biol. 3(10), 1925 (2007)
pmid: 17937496
29 A. Alam-Nazki and J. Krishnan, An investigation of spatial signal transduction in cellular networks, BMC Syst. Biol. 6, 83 (2012)
pmid: 22765014
30 O. Brandman, J. E. Jr Ferrell, R. Li, and T. Meyer, Interlinked fast and slow positive feedback loops drive reliable cell decisions, Science 310(5747), 496 (2005)
pmid: 16239477
31 X. P. Zhang, Z. Cheng, F. Liu, and W. Wang, Linking fast and slow positive feedback loops creates an optimal bistable switch in cell signaling, Phys. Rev. E 76(3 Pt 1), 031924 (2007)
pmid: 17930288
32 G. C. Brown and B. N. Kholodenko, Spatial gradients of cellular phospho-proteins, FEBS Lett. 457(3), 452 (1999)
pmid: 10471827
33 J. D. Murray, Mathematical Biology, New York: Springer, 2008
34 B. Kazmierczak and T. Lipniacki, Regulation of kinase activity by diffusion and feedback, J. Theor. Biol. 259(2), 291 (2009)
pmid: 19306885
35 B. Kazmierczak and T. Lipniacki, Spatial gradients in kinase cascade regulation, IET Syst. Biol. 4(6), 348 (2010)
pmid: 21073234
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed