Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2016, Vol. 11 Issue (5): 111207   https://doi.org/10.1007/s11467-016-0573-6
  本期目录
Gravitational form factors and nucleon spin structure
O. V. Teryaev()
Bogoliubov Laboratory of Theoretical Physics, JINR, 141980 Dubna, Moscow Region, Russia
 全文: PDF(196 KB)  
Abstract

Nucleon scattering by the classical gravitational field is described by the gravitational (energymomentum tensor) form factors (GFFs), which also control the partition of nucleon spin between the total angular momenta of quarks and gluons. The equivalence principle (EP) for spin dynamics results in the identically zero anomalous gravitomagnetic moment, which is the straightforward analog of its electromagnetic counterpart. The extended EP (ExEP) describes its (approximate) validity separately for quarks and gluons and, in turn, results in equal partition of the momentum and total angular momentum. It is violated in quantum electrodynamics and perturbative quantum chromodynamics (QCD), but may be restored in nonperturbative QCD because of confinement and spontaneous chiral symmetry breaking, which is supported by models and lattice QCD calculations. It may, in principle, be checked by extracting the generalized parton distributions from hard exclusive processes. The EP for spin-1 hadrons is also manifested in inclusive processes (deep inelastic scattering and the Drell–Yan process) in sum rules for tensor structure functions and parton distributions. The ExEP may originate in either gravity-proof confinement or in the closeness of the GFF to its asymptotic values in relation to the mediocrity principle. The GFFs in time-like regions reveal some similarity between inflation and annihilation.

Key wordsgravity    form factors    equivalence principle
收稿日期: 2016-01-05      出版日期: 2016-06-08
Corresponding Author(s): O. V. Teryaev   
 引用本文:   
. [J]. Frontiers of Physics, 2016, 11(5): 111207.
O. V. Teryaev. Gravitational form factors and nucleon spin structure. Front. Phys. , 2016, 11(5): 111207.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-016-0573-6
https://academic.hep.com.cn/fop/CN/Y2016/V11/I5/111207
1 <?Pub Caret1?>I. Y. Kobzarev and L. B. Okun, Gravitational interaction of fermions, Zh. Eksp. Teor. Fiz. 43, 1904 (1962) [Sov. Phys. JETP 16, 1343 (1963)]
2 I. Yu. Kobzarev and V. I. Zakharov, Spin precession in a gravitational field, Ann. Phys. 37(1), 1 (1966)
https://doi.org/10.1016/0003-4916(66)90273-9
3 S. Weinberg, Photons and gravitons in s matrix theory: Derivation of charge conservation and equality of gravitational and inertial mass, Phys. Rev. 135(4B), B1049 (1964)
https://doi.org/10.1103/PhysRev.135.B1049
4 H. Pagels, Energy-momentum structure form factors of particles, Phys. Rev. 144(4), 1250 (1966)
https://doi.org/10.1103/PhysRev.144.1250
5 X. Ji, J. Tang, and P. Hoodbhoy, Spin structure of the nucleon in the asymptotic limit, Phys. Rev. Lett. 76(5), 740 (1996)
https://doi.org/10.1103/PhysRevLett.76.740
6 X. Ji, Gauge invariant decomposition of the nucleon spin, Phys. Rev. Lett. 78(4), 610 (1997)
https://doi.org/10.1103/PhysRevLett.78.610
7 O. V. Teryaev, Spin structure of nucleon and equivalence principle, arXiv: hep-ph/9904376 (1999)
8 S. J. Brodsky, M. Diehl, and D. S. Hwang, Light cone wave function representation of deeply virtual Compton scattering, Nucl. Phys. B 596(1-2), 99 (2001), arXiv: hep-ph/0009254
https://doi.org/10.1016/S0550-3213(00)00695-7
9 L. D. Landau and E. M. Lifshitz, Theoretical Physics, Vol. 4
10 L. D. Landau, L. P. Pitaevskii, E. M. Lifshitz, and V. B. Berestetskii, Relativistic Quantum Theory, Pergamon, 1971
11 L. D. Landau and E. M. Lifshitz, Theoretical Physics, Vol. 2
12 L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields, Elsevier, 2013
13 I. B. Khriplovich, A spinning particle in a gravitational field, Zh. Eksp. Teor. Fiz. 96, 385 (1989)
14 S. B. Gerasimov, Dispersion sum rule for magnetic moments and spin dependence of photoabsorption cross-section, Yad. Fiz. 5, 1263 (1967)
15 F. W. Hehl and W. T. Ni, Inertial effects of a Dirac particle, Phys. Rev. D 42(6), 2045 (1990)
https://doi.org/10.1103/PhysRevD.42.2045
16 A. J. Silenko and O. V. Teryaev, Semiclassical limit for Dirac particles interaction with a gravitational field, Phys. Rev. D 71(6), 064016 (2005), arXiv: gr-qc/0407015
https://doi.org/10.1103/PhysRevD.71.064016
17 Y. N. Obukhov, A. J. Silenko, and O. V. Teryaev, Spin dynamics in gravitational fields of rotating bodies and the equivalence principle, Phys. Rev. D 80(6), 064044 (2009), arXiv: 0907.4367 [gr-qc]
https://doi.org/10.1103/PhysRevD.80.064044
18 Y. N. Obukhov, A. J. Silenko, and O. V. Teryaev, Dirac fermions in strong gravitational fields, Phys. Rev. D 84(2), 024025 (2011), arXiv: 1106.0173 [hep-th]
https://doi.org/10.1103/PhysRevD.84.024025
19 Y. N. Obukhov, A. J. Silenko, and O. V. Teryaev, Spin in an arbitrary gravitational field, Phys. Rev. D 88(8), 084014 (2013), arXiv: 1308.4552 [gr-qc]
https://doi.org/10.1103/PhysRevD.88.084014
20 D. Choudhury, N. D. Hari Dass, and M. V. N. Murthy, Gravitational helicity flip for massive neutrinos and SN 1987 A, Class. Quantum Gravity 6(9), L167 (1989)
https://doi.org/10.1088/0264-9381/6/9/003
21 A. Y. Kamenshchik and O. V. Teryaev, Chaotic spin precession in anisotropic universes and fermionic dark matter, arXiv: 1510.08253 [gr-qc] (2015)
22 C. Misner, K. Thorne, and J. Wheeler, Gravitation, Freeman, 1973
23 S. Weinberg, Gravitation and Cosmology, John Wiley and Sons, 1972
24 O. V. Teryaev, Spin structure of nucleon in QCD: Inclusive and exclusive processes, Prepared for International Conference on New Trends in High-Energy Physics: Experiment, Phenomenology, Theory, Yalta, Crimea, 22–29<Date>Sep.</Date> 2001
25 O. V. Teryaev, Sources of time reversal odd spin asymmetries in QCD, Czech. J. Phys. 53, 47 (2003), arXiv: hep-ph/0306301
26 K. A. Milton, Quantum corrections to stress tensors and conformal invariance, Phys. Rev. D 4(12), 3579 (1971)
https://doi.org/10.1103/PhysRevD.4.3579
27 K. A. Milton, Quantum-electrodynamic corrections to the gravitational interaction of the electron, Phys. Rev. D 15(2), 538 (1977)
https://doi.org/10.1103/PhysRevD.15.538
28 F. A. Berends and R. Gastmans, Quantum electrodynamical corrections to graviton matter vertices, Ann. Phys. 98(1), 225 (1976)
https://doi.org/10.1016/0003-4916(76)90245-1
29 S. J. Brodsky, D. S. Hwang, B. Q. Ma, and I. Schmidt, Light-cone representation of the spin and orbital angular momentum of relativistic composite systems, Nucl. Phys. B 593(1-2), 311 (2001)
https://doi.org/10.1016/S0550-3213(00)00626-X
30 M. Deka, T. Doi, Y. B. Yang, B. Chakraborty, S. J. Dong, T. Draper, M. Glatzmaier, M. Gong, H. W. Lin, K. F. Liu, D. Mankame, N. Mathur, and T. Streuer, Lattice study of quark and glue momenta and angular momenta in the nucleon, Phys. Rev. D 91(1), 014505 (2015), arXiv: 1312.4816 [hep-lat]
https://doi.org/10.1103/PhysRevD.91.014505
31 O. V. Teryaev, Equivalence principle and partition of angular momenta in the nucleon, AIP Conf. Proc. 915, 260 (2007), arXiv: hep-ph/0612205
32 E. V. Luschevskaya, O. A. Kochetkov, O. V. Teryaev, and O. E. Solovjeva, π±and ρ0,±mesons in a strong magnetic field on the lattice, JETP Lett. 101(10), 674 (2015)
https://doi.org/10.1134/S0021364015100094
33 Z. Abidin and C. E. Carlson, Gravitational form factors of vector mesons in an AdS/QCD model, Phys. Rev. D 77(9), 095007 (2008), arXiv: 0801.3839 [hep-ph]
https://doi.org/10.1103/PhysRevD.77.095007
34 O. V. Teryaev, Nucleon spin and orbital structure: 20 years later, Mod. Phys. Lett. A 24, 2831 (2009)
https://doi.org/10.1142/S0217732309001042
35 A. V. Efremov and O. V. Teryaev, On high P(T) vector mesons spin alignment, Sov. J. Nucl. Phys. 36, 557 (1982) (Yad. Fiz. 36, 950 (1982))
36 A. V. Efremov and O. V. Teryaev, On the oscillations of the tensor spin structure function, arXiv: hep-ph/9910555 (1999)
37 A. V. Efremov, (HERMES Collaboration), First measurement of the tensor structure function b1 of the deuteron, Phys. Rev. Lett. 95(24), 242001 (2005), arXiv: hep-ex/0506018
https://doi.org/10.1103/PhysRevLett.95.242001
38 O. V. Teryaev, Hadron spin and external fields, Int. J. Mod. Phys. Conf. Ser. 391560083 (2015)
39 L. Susskind, L. Thorlacius, and J. Uglum, The Stretched horizon and black hole complementarity, Phys. Rev. D 48(8), 3743 (1993), arXiv: hep-th/9306069
https://doi.org/10.1103/PhysRevD.48.3743
40 X. Artru, M. Elchikh, J. M. Richard, J. Soffer, and O. V. Teryaev, Spin observables and spin structure functions: inequalities and dynamics, Phys. Rep. 470(1-2), 1 (2009), arXiv: 0802.0164 [hep-ph]
https://doi.org/10.1016/j.physrep.2008.09.004
41 A. Vilenkin, The principle of mediocrity, arXiv: 1108.4990 [hep-th]
42 K. Goeke, M. V. Polyakov, and M. Vanderhaeghen, Hard exclusive reactions and the structure of hadrons, Prog. Part. Nucl. Phys. 47(2), 401 (2001), arXiv: hep-ph/0106012
https://doi.org/10.1016/S0146-6410(01)00158-2
43 O. V. Teryaev, Analytic properties of hard exclusive amplitudes, hep-ph/0510031 (2005)
44 I. V. Anikin and O. V. Teryaev, Dispersion relations and subtractions in hard exclusive processes, Phys. Rev. D 76, 056007 (2007), arXiv: 0704.2185 [hep-ph]
https://doi.org/10.1103/PhysRevD.76.056007
45 I. R. Gabdrakhmanov and O. V. Teryaev, Analyticity and sum rules for photon GPDs, Phys. Lett. B 716(3-5), 417 (2012), arXiv: 1204.6471 [hep-ph]
https://doi.org/10.1016/j.physletb.2012.08.041
46 M. Mai and P. Schweitzer, Energy momentum tensor, stability, and the D-term of Q-balls, Phys. Rev. D 86(7), 076001 (2012), arXiv: 1206.2632 [hep-ph]
https://doi.org/10.1103/PhysRevD.86.076001
47 M. Mai and P. Schweitzer, Radial excitations of Q-balls, and their D-term, Phys. Rev. D 86(9), 096002 (2012), arXiv: 1206.2930 [hep-ph]
https://doi.org/10.1103/PhysRevD.86.096002
48 O. Teryaev, Analyticity and higher twists, Nucl. Phys. B 245, 195 (2013), arXiv: 1309.1985 [hep-ph]
https://doi.org/10.1016/j.nuclphysbps.2013.10.039
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed