Dopants and defects are important in semiconductor and magnetic devices. Strategies for controlling doping and defects have been the focus of semiconductor physics research during the past decades and remain critical even today. Co-doping is a promising strategy that can be used for effectively tuning the dopant populations, electronic properties, and magnetic properties. It can enhance the solubility of dopants and improve the stability of desired defects. During the past 20 years, significant experimental and theoretical efforts have been devoted to studying the characteristics of co-doping. In this article, we first review the historical development of co-doping. Then, we review a variety of research performed on co-doping, based on the compensating nature of co-dopants. Finally, we review the effects of contamination and surfactants that can explain the general mechanisms of co-doping.
C. Freysoldt, B. Grabowski, T. Hickel, J. Neugebauer, G. Kresse, A. Janotti, and C. G. Van de Walle, Firstprinciples calculations for point defects in solids, Rev. Mod. Phys. 86(1), 253 (2014)
https://doi.org/10.1103/RevModPhys.86.253
H. Katayama-Yoshida, T. Nishimatsu, T. Yamamoto, and N. Orita, Codoping method for the fabrication of low-resistivity wide band-gap semiconductors in p-type GaN, p-type AlN and n-type diamond: Prediction versus experiment, J. Phys.: Condens. Matter 13(40), 8901 (2001)
https://doi.org/10.1088/0953-8984/13/40/304
4
U. Kaufmann, P. Schlotter, H. Obloh, K. Köhler, and M. Maier, Hole conductivity and compensation in epitaxial GaN:Mg layers, Phys. Rev. B 62(16), 10867 (2000)
https://doi.org/10.1103/PhysRevB.62.10867
5
R. Korotkov, J. Gregie, and B. Wessels, Electrical properties of p-type GaN:Mg codoped with oxygen, Appl. Phys. Lett. 78(2), 222 (2001)
https://doi.org/10.1063/1.1335542
6
G. Kipshidze, V. Kuryatkov, B. Borisov, Y. Kudryavtsev, R. Asomoza, S. Nikishin, and H. Temkin, Mg and O codoping in p-type GaN and AlxGa1−xN (0<x<0.08), Appl. Phys. Lett. 80(16), 2910 (2002)
https://doi.org/10.1063/1.1471373
7
B. Gudden, On electrical conduction in semiconductors, Sitzungsberichte der Physikalisch-medizinischen Sozietat zu Erlangen, 62, 289 (1930)
L. Grondahl and P. H. Geiger, A new electronic rectifier, Transactions of the American Institute of Electrical Engineers, 46, 357 (1927)
https://doi.org/10.1109/T-AIEE.1927.5061364
11
C. E. Fritts, On a new form of selenium cell, and some electrical discoveries made by its use, Am. J. Sci. s3-26 (156), 465 (1883)
12
J. Preston, The selenium rectifier photocell: Manufacture, properties, and use in photometry, Journal of the Institution of Electrical Engineers 79(478), 424 (1936)
https://doi.org/10.1049/jiee-1.1936.0170
13
B. Davydov, The rectifying action of semiconductors, Technical Physics of the USSR 5, 87 (1938)
14
J. R. Woodyard, Nonlinear circuit device utilizing germanium, US2530110[P] (1950)
H. Choi, The boundaries of industrial research: Making transistors at RCA, 1948–1960, Technol. Cult. 48(4), 758 (2007)
https://doi.org/10.1353/tech.2007.0157
17
G. Teal, M. Sparks, and E. Buehler, Growth of germanium single crystals containing p–n junctions, Phys. Rev. 81(4), 637 (1951)
https://doi.org/10.1103/PhysRev.81.637
18
M. Sparks, Method of making p–n junctions, US2631356A[P] (1953)
H. Reiss, Chemical effects due to the ionization of impurities in semiconductors, J. Chem. Phys. 21(7), 1209 (1953)
https://doi.org/10.1063/1.1699165
22
H. Reiss, C. Fuller, and A. Pietruszkiewicz, Solubility of lithium in doped and undoped silicon, evidence for compound formation, J. Chem. Phys. 25(4), 650 (1956)
https://doi.org/10.1063/1.1743021
H. Reiss and C. Fuller, The effect of ion pair and ion triplet formation on the solubility of lithium in germanium — effect of gallium and zinc, J. Phys. Chem. Solids 4(1–2), 58 (1958)
https://doi.org/10.1016/0022-3697(58)90194-X
28
R. Korotkov, J. Gregie, and B. Wessels, Codoping of wide gap epitaxial III-Nitride semiconductors, Opto-Electron. Rev. 4, 243 (2002)
E. Mahlab, V. Volterra, W. Low, and A. Yariv, Orthorhombic electron spin resonance spectrum of U3 in CaF2, Phys. Rev. 131(3), 920 (1963)
https://doi.org/10.1103/PhysRev.131.920
31
P. Weller and J. Scardefield, Doping of alkaline earth halide single crystals, J. Electrochem. Soc. 111(8), 1009 (1964)
https://doi.org/10.1149/1.2426284
32
M. Taylor, An experimental study of the efficiency of optical energy transfer between Cr3 and Nd3 ions in yttrium aluminium garnet, Proc. Phys. Soc. 90(2), 487 (1967)
https://doi.org/10.1088/0370-1328/90/2/319
J. Axe and P. Weller, Fluorescence and energy transfer in Y2O3:Eu3, J. Chem. Phys. 40(10), 3066 (1964)
https://doi.org/10.1063/1.1724949
35
M. Brown, J. Whiting, and W. Shand, Ion-ion interactions in rare-earth-doped LaF3, J. Chem. Phys. 43(1), 1 (1965)
https://doi.org/10.1063/1.1696455
36
H. Rast, H. Caspers, and S. Miller, Fluorescence and energy transfer between Nd3 and Yb3 in LaF3, J. Chem. Phys. 47(10), 3874 (1967)
https://doi.org/10.1063/1.1701548
E. J. Sharp, M. J. Weber, and G. Cleek, Energy transfer and fluorescence quenching in Eu-and Nd-doped silicate glasses, J. Appl. Phys. 41(1), 364 (1970)
https://doi.org/10.1063/1.1658349
39
N. Melamed, C. Hirayama, and P. French, Laser action in uranyl-sensitized Nd-doped glass, Appl. Phys. Lett. 6(3), 43 (1965)
https://doi.org/10.1063/1.1754156
40
E. Snitzer and R. Woodcock, 9C8- Saturable absorption of color centers in Nd3+ and Nd3+-Yb3+ laser glass, IEEE J. Quantum Electron. 2(9), 627 (1966)
https://doi.org/10.1109/JQE.1966.1074104
41
H. Gandy, R. Ginther, and J. Weller, Internal Q switching of Ho3-Stimulated emission in iron-containing glasses, Appl. Phys. Lett. 9(8), 277 (1966)
https://doi.org/10.1063/1.1754748
42
L. Erickson and A. Szabo, Behavior of saturableabsorber giant-pulse lasers in the limit of large absorber cross section, J. Appl. Phys. 38(6), 2540 (1967)
https://doi.org/10.1063/1.1709945
J. L. Wolf and P. P. Yaney, The enhancement of the 6P(7/2) fluorescence of Gd(3) in SrF2 containing Ce(3+) as a codopant, Rept. No. UDRI-TR-69-34 (1970)
45
A. Lyall, H. Seiger, and R. Shair, Lithium-nickel Halide Secondary Battery Investigation (1966)
46
M. Balkanski and W. Nazarewicz, Infrared study of localized vibrations in silicon due to boron and lithium, J. Phys. Chem. Solids 27(4), 671 (1966)
https://doi.org/10.1016/0022-3697(66)90218-6
47
B. Faughnan and Z. Kiss, Photoinduced reversible charge-transfer processes in transition-metal-doped single-crystal SrTiO3 and TiO2, Phys. Rev. Lett. 21(18), 1331 (1968)
https://doi.org/10.1103/PhysRevLett.21.1331
48
B. W. Faughnan and Z. J. Kiss, Optical and EPR studies of photochromic SrTiO3 doped with Fe/Mo and Ni/Mo, IEEE J. Quantum Electron. 5, 17 (1969)
https://doi.org/10.1109/JQE.1969.1075665
49
D. Thomas, M. Gershenzon, and F. Trumbore, Pair spectra and “edge” emission in gallium phosphide, Phys. Rev. 133(1A), A269 (1964)
https://doi.org/10.1103/PhysRev.133.A269
50
L. Foster and J. Scardefield, Oxygen doping of solutiongrown gaP, J. Electrochem. Soc. 116(4), 494 (1969)
https://doi.org/10.1149/1.2411919
51
H. Komiya, Optical spectra of Tm3 ions in ZnSe:Tm, Li and ZnSe:Tm, Cu crystals, J. Phys. Soc. Jpn. 27(4), 893 (1969)
https://doi.org/10.1143/JPSJ.27.893
H. Kukimoto, S. Shionoya, T. Koda, and R. Hioki, Infrared absorption due to donor states in ZnS crystals, J. Phys. Chem. Solids 29(6), 935 (1968)
https://doi.org/10.1016/0022-3697(68)90228-X
54
J. Apperson, G. Garlick, W. Lamb, and B. Lunn, Luminescence properties of rare earth activated cadmium sulphide in the range 4000 to 15000 cm−1, Physica Status Solidi (b) 34, 537 (1969)
https://doi.org/10.1002/pssb.19690340214
55
L. Miller, Properties of Elemental and Compound Semiconductors, New York: Interscience, 1960, p. 303
56
C. Fuller, F. Doleiden, and K. Wolfstirn, Reactions of group III acceptors with oxygen in silicon crystals, J. Phys. Chem. Solids 13(3-4), 187 (1960)
https://doi.org/10.1016/0022-3697(60)90002-0
57
R. Chrenko, R. McDonald, and E. Pell, Vibrational spectra of lithium-oxygen and lithium-boron complexes in silicon, Phys. Rev. 138(6A), A1775 (1965)
https://doi.org/10.1103/PhysRev.138.A1775
58
A. Cosand and W. Spitzer, Localized vibrational modes of Li and P impurities in germanium, Appl. Phys. Lett. 11(9), 279 (1967)
https://doi.org/10.1063/1.1755134
W. Wilcox, T. LaChapelle, and D. Forbes, Gold in silicon: Effect on resistivity and diffusion in heavily-doped layers, J. Electrochem. Soc. 111(12), 1377 (1964)
https://doi.org/10.1149/1.2426008
61
M. Joshi and S. Dash, Distribution and precipitation of gold in phosphorus-diffused silicon, J. Appl. Phys. 37(6), 2453 (1966)
https://doi.org/10.1063/1.1708836
R. D. Baxter, R. Bate, and F. Reid, Ion-pairing between lithium and the residual acceptors in GaSb, J. Phys. Chem. Solids 26(1), 41 (1965)
https://doi.org/10.1016/0022-3697(65)90070-3
L. Riseberg and W. Holton, Nd ion site distribution and spectral line broadening in YA1G:Lu, Nd laser materials, J. Appl. Phys. 43(4), 1876 (1972)
https://doi.org/10.1063/1.1661411
66
R. Hotz, Thermal transient effects in repetitively pulsed flashlamp-pumped YAG:Nd and YAG:Nd, Lu laser material, Appl. Opt. 12(8), 1834 (1973)
https://doi.org/10.1364/AO.12.001834
67
J. Kvapil, J. Kvapil, and B. Perner, O− centre formation in yag crystals doped with rare earth ions, Kristall und Technik 10(2), 161 (1975)
https://doi.org/10.1002/crat.19750100211
68
J. Falk, L. Huff, and J. Taynai, Solar-pumped, modelocked, frequency-doubled Nd:YAG laser, IEEE J. Quantum Electron. 11(9), 836 (1975)
https://doi.org/10.1109/JQE.1975.1068930
69
Y. K. Voronko and A. Sobol, Classification and analysis of the impurity ion clusters in Y3AI5O12, Physica Status Solidi (a) 27, 257 (1975)
https://doi.org/10.1002/pssa.2210270130
70
R. A. Hewes and J. F. Sarver, Infrared excitation processes for the visible luminescence of Er3, Ho3, and Tm3 in Yb3-sensitized rare-earth trifluorides, Phys. Rev. 182(2), 427 (1969)
https://doi.org/10.1103/PhysRev.182.427
71
G. Ban and H. Hersh, Degradation of some IR upconverting phosphors by ionizing radiation, J. Electron. Mater. 1(2), 320 (1972)
https://doi.org/10.1007/BF02660139
72
S. Zenbutu, R. Nakata, M. Sumita, and E. Higuchi, EPR study of characteristics of Fe3 ions with cubic symmetry in CaF2 crystals, Jpn. J. Appl. Phys. 10(11), 1497 (1971)
https://doi.org/10.1143/JJAP.10.1497
73
P. P. Yaney, D. M. Schaeffer, and J. L. Wolf, Fluorescence and absorption studies of Sr0.999−xGd0.001CexF2.001+x, Phys. Rev. B 11(7), 2460 (1975)
https://doi.org/10.1103/PhysRevB.11.2460
74
G. Miner, T. Graham, and G. Johnston, Effect of a Ce3 codopant on the Gd3 EPR spectrum of SrF2 at room temperature, J. Chem. Phys. 57(3), 1263 (1972)
https://doi.org/10.1063/1.1678385
V. Swaminathan and L. Greene, Pair spectra, edge emission, and the shallow acceptors in melt-grown ZnSe, Phys. Rev. B 14(12), 5351 (1976)
https://doi.org/10.1103/PhysRevB.14.5351
78
H. Woodbury, Anomalous mobility behavior in CdS and CdTe: Electrical evidence for impurity pairs, Phys. Rev. B 9(12), 5188 (1974)
https://doi.org/10.1103/PhysRevB.9.5188
79
K. Arai, H. Namikawa, K. Kumata, T. Honda, Y. Ishii, and T. Handa, Aluminum or phosphorus co-doping effects on the fluorescence and structural properties of neodymium-doped silica glass, J. Appl. Phys. 59(10), 3430 (1986)
https://doi.org/10.1063/1.336810
80
Y. Ishii, K. Arai, H. Namikawa, M. Tanaka, A. Negishi, and T. Handa, Preparation of cerium-activated silica glasses: Phosphorus and aluminum codoping effects on absorption and fluorescence properties, J. Am. Ceram. Soc. 70(2), 72 (1987)
https://doi.org/10.1111/j.1151-2916.1987.tb04932.x
81
S. G. Kosinski, D. M. Krol, T. Duncan, D. Douglas, J. MacChesney, and J. Simpson, Raman and NMR spectroscopy of SiO2 glasses co-doped with Al2O3 and P2O5, J. Non-Cryst. Solids 105(1–2), 45 (1988)
https://doi.org/10.1016/0022-3093(88)90336-5
82
C. A. Millar, B. Ainslie, I. Miller, and S. Craig, Concentration and co-doping dependence of the 4F3/2 to 4/I11/2 lasing behavior of Nd3+ silica fibers, Zhurnal Mikrobiologii Epidemiologii I Immunobiologii, 72(2), 113-5 (1995)
83
V. Rakovics, R. Fornari, C. Paorici, L. Zanotti, and C. Mucchino, Indium-silicon co-doping effects in LECGrown gallium arsenide crystals, Acta Phys. Hung. 61, 255 (1987)
84
H. Miyairi, T. Inada, M. Eguchi, and T. Fukuda, Growth and properties of InP single crystals grown by the magnetic field applied LEC method, J. Cryst. Growth 79(1–3), 291 (1986)
https://doi.org/10.1016/0022-0248(86)90451-3
85
B. Lambert, Y. Toudic, G. Grandpierre, M. Gauneau, and B. Deveaud, Semi-insulating InP co-doped with Ti and Hg, Semicond. Sci. Technol. 2(2), 78 (1987)
https://doi.org/10.1088/0268-1242/2/2/002
86
Y. Toudic, R. Coquille, M. Gauneau, G. Grandpierre, L. Le Marechal, and B. Lambert, Growth of double doped semi-insulating indium phosphide single crystals, J. Cryst. Growth 83(2), 184 (1987)
https://doi.org/10.1016/0022-0248(87)90005-4
R. Fornari, J. Kumar, M. Curti, and G. Zuccalli, Growth and properties of bulk indium phosphide doubly doped with cadmium and sulphur, J. Cryst. Growth 96(4), 795 (1989)
https://doi.org/10.1016/0022-0248(89)90639-8
89
A. G. Dentai and C. H. JoynerJr, Semiconductor devices employing Ti-doped Group III-V epitaxial layer, US4774554[P] (1988)
E. Ö. Sveinbjörnsson and O. Engström, Reaction kinetics of hydrogen-gold complexes in silicon, Phys. Rev. B 52(7), 4884 (1995)
https://doi.org/10.1103/PhysRevB.52.4884
92
A. A. Istratov, C. Flink, H. Hieslmair, E. R. Weber, and T. Heiser, Intrinsic diffusion coefficient of interstitial copper in silicon, Phys. Rev. Lett. 81(6), 1243 (1998)
https://doi.org/10.1103/PhysRevLett.81.1243
93
S. McHugo, R. McDonald, A. Smith, D. Hurley, and E. Weber, Iron solubility in highly boron-doped silicon, Appl. Phys. Lett. 73(10), 1424 (1998)
https://doi.org/10.1063/1.121964
P. Bogusl?awski, E. L. Briggs, and J. Bernholc, Amphoteric properties of substitutional carbon impurity in GaN and AlN, Appl. Phys. Lett. 69(2), 233 (1996)
https://doi.org/10.1063/1.117934
S. Zhang, The microscopic origin of the doping limits in semiconductors and wide-gap materials and recent developments in overcoming these limits: A review, J. Phys.: Condens. Matter 14(34), R881 (2002)
https://doi.org/10.1088/0953-8984/14/34/201
101
Y. Gai, J. Li, S. Li, J. Xia, and S. Wei, Design of narrowgap TiO2: A passivated codoping approach for enhanced photoelectrochemical activity, Phys. Rev. Lett. 102(3), 036402 (2009)
https://doi.org/10.1103/PhysRevLett.102.036402
102
J. Zhang, C. Pan, P. Fang, J. Wei, and R. Xiong, Mo C codoped TiO2 using thermal oxidation for enhancing photocatalytic activity, ACS Appl. Mater. Interfaces 2(4), 1173 (2010)
https://doi.org/10.1021/am100011c
103
R. Long and N. J. English, Tailoring the electronic structure of TiO2 by cation codoping from hybrid density functional theory calculations, Phys. Rev. B 83(15), 155209 (2011)
https://doi.org/10.1103/PhysRevB.83.155209
104
O. Khaselev and J. A. Turner, A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting, Science 280(5362), 425 (1998)
https://doi.org/10.1126/science.280.5362.425
105
R. Long and N. J. English, Band gap engineering of (N, Ta)-codoped TiO2: A first-principles calculation, Chem. Phys. Lett. 478(4–6), 175 (2009)
https://doi.org/10.1016/j.cplett.2009.07.084
106
R. Long and N. J. English, Synergistic effects on band gap-narrowing in titania by codoping from firstprinciples calculations, Chem. Mater. 22(5), 1616 (2010)
https://doi.org/10.1021/cm903688z
107
T. M. Breault and B. M. Bartlett, Lowering the band gap of anatase-structured TiO2 by coalloying with Nb and N: Electronic structure and photocatalytic degradation of methylene blue dye, J. Phys. Chem. C 116(10), 5986 (2012)
https://doi.org/10.1021/jp2078456
108
P. Dong, B. Liu, Y. Wang, H. Pei, and S. Yin, Enhanced photocatalytic activity of (Mo, C)-codoped anatase TiO2 nanoparticles for degradation of methyl orange under simulated solar irradiation, J. Mater. Res. 25(12), 2392 (2010)
https://doi.org/10.1557/jmr.2010.0307
109
E. M. Neville, M. J. Mattle, D. Loughrey, B. Rajesh, M. Rahman, J. D. MacElroy, J. A. Sullivan, and K. R. Thampi, Carbon-doped TiO2 and carbon, tungstencodoped Tio2 through sol–gel processes in the presence of melamine borate: Reflections through photocatalysis, J. Phys. Chem. C 116(31), 16511 (2012)
https://doi.org/10.1021/jp303645p
110
Q. Xiao and L. Gao, One-step hydrothermal synthesis of C, W-codoped mesoporous TiO2 with enhanced visible light photocatalytic activity, J. Alloys Compd. 551, 286 (2013)
https://doi.org/10.1016/j.jallcom.2012.10.040
111
J. Xu, C. Chen, X. Xiao, L. Liao, L. Miao, W. Wu, F. Mei, A. L. Stepanov, G. Cai, Y. Liu, Z. Dai, F. Ren, C. Jiang, and J. Liu, Synergistic effect of V/N codoping by ion implantation on the electronic and optical properties of TiO2, J. Appl. Phys. 115(14), 143106 (2014)
https://doi.org/10.1063/1.4871192
112
X. Ma, Y. Wu, Y. Lu, J. Xu, Y. Wang, and Y. Zhu, Effect of compensated codoping on the photoelectrochemical properties of anatase TiO2 photocatalyst, J. Phys. Chem. C 115(34), 16963 (2011)
https://doi.org/10.1021/jp202750w
113
R. Long and N. J. English, Band gap engineering of double-cation-impurity-doped anatase-titania for visible-light photocatalysts: A hybrid density functional theory approach, Phys. Chem. Chem. Phys. 13(30), 13698 (2011)
https://doi.org/10.1039/c1cp21454c
114
R. Long and N. J. English, Electronic structure of cation-codoped TiO2 for visible-light photocatalyst applications from hybrid density functional theory calculations, Appl. Phys. Lett. 98(14), 142103 (2011)
https://doi.org/10.1063/1.3574773
115
H. Irie, Y. Watanabe, and K. Hashimoto, Nitrogenconcentration dependence on photocatalytic activity of TiO2−xNx powders, J. Phys. Chem. B 107(23), 5483 (2003)
https://doi.org/10.1021/jp030133h
116
J. Neugebauer and C. G. Van de Walle, Role of hydrogen in doping of GaN, Appl. Phys. Lett. 68(13), 1829 (1996)
https://doi.org/10.1063/1.116027
117
S. Nakamura, T. Mukai, M. Senoh, and N. Iwasa, Thermal annealing effects on p-type Mg-doped GaN films, Jpn. J. Appl. Phys. 31, L139 (1992)
https://doi.org/10.1143/JJAP.31.L139
118
W. Zhu, X. Qiu, V. Iancu, X. Chen, H. Pan, W. Wang, N. M. Dimitrijevic, T. Rajh, Meyer, M. P. Paranthaman, G. M. Stocks, H. H. Weitering, B. Gu, G. Eres, and Z. Zhang, Band gap narrowing of titanium oxide semiconductors by noncompensated anion-cation codoping for enhanced visible-light photoactivity, Phys. Rev. Lett. 103(22), 226401 (2009)
https://doi.org/10.1103/PhysRevLett.103.226401
119
F. Wu, H. Lan, Z. Zhang, and P. Cui, Quantum efficiency of intermediate-band solar cells based on noncompensated np codoped TiO2, J. Chem. Phys. 137(10), 104702 (2012)
https://doi.org/10.1063/1.4750981
120
X. Li, G. Wu, G. Zhong, W. Li, G. Lu, C. Yang, X. Xiao, and Z. Zhang, Single element non-compensate np codoped CuAlSe2 as candidate materials for intermediateband solar cells (2015)
121
M. Han, X. Zhang, Y. Zhang, and Z. Zeng, The group VA element non-compensated n–p codoping in CuGaS2 for intermediate band materials, Sol. Energy Mater. Sol. Cells 144, 664 (2016)
https://doi.org/10.1016/j.solmat.2015.10.011
122
A. Fujishima and K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature 238(5358), 37 (1972)
https://doi.org/10.1038/238037a0
R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides, Science 293(5528), 269 (2001)
https://doi.org/10.1126/science.1061051
125
A. Luque and A. Martí, Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels, Phys. Rev. Lett. 78(26), 5014 (1997)
https://doi.org/10.1103/PhysRevLett.78.5014
126
M. E. Kurtoglu, T. Longenbach, K. Sohlberg, and Y. Gogotsi, Strong coupling of Cr and N in Cr–N-doped TiO2 and its effect on photocatalytic activity, J. Phys. Chem. C 115(35), 17392 (2011)
https://doi.org/10.1021/jp2026972
127
Y. Li, W. Wang, X. Qiu, L. Song, M. P. IIIMeyer, G. Paranthaman, Z. Eres, Zhang, and B. Gu, Comparing Cr, and N only doping with (Cr, N)-codoping for enhancing visible light reactivity of TiO2, Appl. Catal. B 110, 148 (2011)
https://doi.org/10.1016/j.apcatb.2011.08.037
128
M. Chiodi, C. P. Cheney, P. Vilmercati, E. Cavaliere, N. Mannella, H. H. Weitering, and L. Gavioli, Enhanced dopant solubility and visible-light absorption in Cr–N codoped TiO2 nanoclusters, J. Phys. Chem. C 116(1), 311 (2012)
https://doi.org/10.1021/jp208834n
129
J. Jaćimović, R. Gaal, A. Magrez, L. Forró, M. Regmi, and G. Eres, Electrical property measurements of Cr-N codoped TiO2 epitaxial thin films grown by pulsed laser deposition, Appl. Phys. Lett. 102(17), 172108 (2013)
https://doi.org/10.1063/1.4804240
130
Y. Wang, Z. Cheng, S. Tan, X. Shao, B. Wang, and J. Hou, Characterization of Cr–N codoped anatase TiO2(001) thin films epitaxially grown on SrTiO3(001) substrate, Surf. Sci. 616, 93 (2013)
https://doi.org/10.1016/j.susc.2013.05.008
131
C. P. Cheney, P. Vilmercati, E. W. Martin, M. Chiodi, L. Gavioli, M. Regmi, G. Eres, T. A. Callcott, H. H. Weitering, and N. Mannella, Origins of electronic band gap reduction in Cr/N codoped TiO2, Phys. Rev. Lett. 112(3), 036404 (2014)
https://doi.org/10.1103/PhysRevLett.112.036404
132
W. Lu, H. Nguyen, C. Wu, K. Chang, and M. Yoshimura, Modulation of physical and photocatalytic properties of (Cr, N) codoped TiO2 nanorods using soft solution processing, J. Appl. Phys. 115(14), 144305 (2014)
https://doi.org/10.1063/1.4871200
133
Z. Bi, M. P. Paranthaman, B. Guo, R. R. Unocic, C. A. IIIMeyer, X. Bridges, Sun, and S. Dai, High performance Cr, N-codoped mesoporous TiO2 microspheres for lithium-ion batteries, J. Mater. Chem. A 2(6), 1818 (2014)
https://doi.org/10.1039/C3TA14535B
134
M. Khan, J. Xu, N. Chen, and W. Cao, First principle calculations of the electronic and optical properties of pure and (Mo, N) co-doped anatase TiO2, J. Alloys Compd. 513, 539 (2012)
https://doi.org/10.1016/j.jallcom.2011.11.002
135
J. Zhang, J. Xi, and Z. Ji, Mo N codoped TiO2 sheets with dominant {001} facets for enhancing visible-light photocatalytic activity, J. Mater. Chem. 22(34), 17700 (2012)
https://doi.org/10.1039/c2jm32391e
136
M. Li, J. Zhang, and Y. Zhang, Electronic structure and photocatalytic activity of N/Mo doped anatase TiO2, Catal. Commun. 29, 175 (2012)
https://doi.org/10.1016/j.catcom.2012.10.014
137
W. Shockley and H. J. Queisser, Detailed balance limit of efficiency of p–n junction solar cells, J. Appl. Phys. 32(3), 510 (1961)
https://doi.org/10.1063/1.1736034
138
A. Luque and A. Marti, A metallic intermediate band high efficiency solar cell, Prog. Photovolt. Res. Appl. 9(2), 73 (2001)
https://doi.org/10.1002/pip.354
139
H. Katayama-Yoshida, R. Kato, and T. Yamamoto, New valence control and spin control method in GaN and AlN by codoping and transition atom doping, J. Cryst. Growth 231(3), 428 (2001)
https://doi.org/10.1016/S0022-0248(01)01474-9
140
J. Li and J. Kang, Polarization effect on p-type doping efficiency in Mg–Si codoped wurtzite GaN from first-principles calculations, Phys. Rev. B 71(3), 035216 (2005)
https://doi.org/10.1103/PhysRevB.71.035216
141
K. H. Ploog and O. Brandt, Doping of group III nitrides, J. Vac. Sci. Technol. A 16(3), 1609 (1998)
https://doi.org/10.1116/1.581128
142
K. S. Kim, C. S. Oh, M. S. Han, C. S. Kim, G. M. Yang, J. W. Yang, C. Hong, C. J. Youn, K. Y. Lim, and H. J. Lee, Co-doping characteristics of Si and Zn with Mg in p-type GaN, MRS Proceedings 595, F99W3.84 (1999)
143
T. Kida, Y. Minami, G. Guan, M. Nagano, M. Akiyama, and A. Yoshida, Photocatalytic activity of gallium nitride for producing hydrogen from water under light irradiation, J. Mater. Sci. 41(11), 3527 (2006)
https://doi.org/10.1007/s10853-005-5655-8
144
H. Pan, B. Gu, G. Eres, and Z. Zhang, Ab initio study on noncompensated CrO codoping of GaN for enhanced solar energy conversion, J. Chem. Phys. 132(10), 104501 (2010)
https://doi.org/10.1063/1.3337919
145
Z. Xu, Q. Zheng, and G. Su, Charged states and band-gap narrowing in codoped ZnO nanowires for enhanced photoelectrochemical responses: Density functional first-principles calculations, Phys. Rev. B 85(7), 075402 (2012)
https://doi.org/10.1103/PhysRevB.85.075402
146
S. Kishimoto, T. Hasegawa, H. Kinto, O. Matsumoto, and S. Iida, Effect and comparison of co-doping of Ag, AgIn, and AgCl in ZnS:N/GaAs layers prepared by vapor-phase epitaxy, J. Cryst. Growth214–215, 556 (2000)
https://doi.org/10.1016/S0022-0248(00)00151-2
M. Muruganandham and Y. Kusumoto, Synthesis of N, C codoped hierarchical porous microsphere ZnS as a visible light-responsive photocatalyst, J. Phys. Chem. C113(36), 16144 (2009)
https://doi.org/10.1021/jp904253u
149
H. Sun, X. Zhao, L. Zhang, and W. Fan, Origin of the enhanced visible photocatalytic activity in (N, C)- codoped ZnS studied from density functional theory, J. Phys. Chem. C 115(5), 2218 (2011)
https://doi.org/10.1021/jp110263e
150
W. Yin, S. Wei, M. M. Al-Jassim, and Y. Yan, Doublehole- mediated coupling of dopants and its impact on band gap engineering in TiO2, Phys. Rev. Lett. 106(6), 066801 (2011)
https://doi.org/10.1103/PhysRevLett.106.066801
151
P. Wang, Z. Liu, F. Lin, G. Zhou, J. Wu, W. Duan, B. Gu, and S. Zhang, Optimizing photoelectrochemical properties of TiO2 by chemical codoping, Phys. Rev. B 82(19), 193103 (2010)
https://doi.org/10.1103/PhysRevB.82.193103
152
J. Li, S. Wei, S. Li, and J. Xia, Design of shallow acceptors in ZnO: First-principles band-structure calculations, Phys. Rev. B 74(8), 081201 (2006)
https://doi.org/10.1103/PhysRevB.74.081201
153
X. Zhang, X. Li, T. Chen, C. Zhang, and W. Yu, ptype conduction in wide-gap Zn1−xMgxO films grown by ultrasonic spray pyrolysis, Appl. Phys. Lett. 87, 2101 (2005)
154
T. Kataoka, Y. Yamazaki, V. Singh, Y. Sakamoto, A. Fujimori, Y. Takeda, T. Ohkochi, S. Fujimori, T. Okane, Y. Saitoh, H. Yamagami, A. Tanaka, M. Kapilashrami, L. Belova, and K. V. Rao, Ferromagnetism in ZnO codoped with Mn and N studied by soft X-ray magnetic circular dichroism, Appl. Phys. Lett. 99(13), 132508 (2011)
https://doi.org/10.1063/1.3643044
155
L. Shen, R. Wu, H. Pan, G. Peng, M. Yang, Z. Sha, and Y. Feng, Mechanism of ferromagnetism in nitrogendoped ZnO: First-principle calculations, Phys. Rev. B 78(7), 073306 (2008)
https://doi.org/10.1103/PhysRevB.78.073306
156
H. Jung, C. Song, S. Wang, K. Arai, Y. Wu, Z. Zhu, T. Yao, and H. Katayama-Yoshida, Carrier concentration enhancement of p-type ZnSe and ZnS by codoping with active nitrogen and tellurium by using a d-doping technique, Appl. Phys. Lett. 70(9), 1143 (1997)
https://doi.org/10.1063/1.118481
157
M. Ni, M. K. Leung, D. Y. Leung, and K. Sumathy, A review and recent developments in photocatalytic watersplitting using TiO2 for hydrogen production, Renew. Sustain. Energy Rev. 11(3), 401 (2007)
https://doi.org/10.1016/j.rser.2005.01.009
158
M. Sathish, B. Viswanathan, R. Viswanath, and C. S. Gopinath, Synthesis, characterization, electronic structure, and photocatalytic activity of nitrogen-doped TiO2 nanocatalyst, Chem. Mater. 17(25), 6349 (2005)
https://doi.org/10.1021/cm052047v
159
H. Sun, Y. Bai, Y. Cheng, W. Jin, and N. Xu, Preparation and characterization of visible-light-driven carbonsulfur- codoped TiO2 photocatalysts, Ind. Eng. Chem. Res. 45(14), 4971 (2006)
https://doi.org/10.1021/ie060350f
160
L. Jia, C. Wu, Y. Li, S. Han, Z. Li, B. Chi, J. Pu, and L. Jian, Enhanced visible-light photocatalytic activity of anatase TiO2 through N and S codoping, Appl. Phys. Lett. 98(21), 211903 (2011)
https://doi.org/10.1063/1.3593147
161
D. B. Hamal and K. J. Klabunde, Valence state and catalytic role of cobalt ions in cobalt TiO2 nanoparticle photocatalysts for acetaldehyde degradation under visible light, J. Phys. Chem. C 115(35), 17359 (2011)
https://doi.org/10.1021/jp200405y
162
A. N. Mangham, N. Govind, M. E. Bowden, V. Shutthanandan, A. G. Joly, M. A. Henderson, and S. A. Chambers, Photochemical properties, composition, and structure in molecular beam epitaxy grown Fe “doped” and (Fe, N) codoped rutile TiO2(110), J. Phys. Chem. C 115(31), 15416 (2011)
https://doi.org/10.1021/jp203061n
163
C. Park, S. Zhang, and S. Wei, Origin of p-type dopingdifficulty in ZnO: The impurity perspective, Phys. Rev. B 66(7), 073202 (2002)
https://doi.org/10.1103/PhysRevB.66.073202
164
K. R. Kittilstved, N. S. Norberg, and D. R. Gamelin, Chemical manipulation of high-Tc ferromagnetism in ZnO diluted magnetic semiconductors, Phys. Rev. Lett. 94(14), 147209 (2005)
https://doi.org/10.1103/PhysRevLett.94.147209
165
K. R. Kittilstved and D. R. Gamelin, Manipulating polar ferromagnetism in transition metal doped ZnO: Why manganese is different from cobalt, J. Appl. Phys. 99, 08M112 (2006)
166
L. Zhao, P. Lu, Z. Yu, X. Guo, Y. Shen, H. Ye, G. Yuan, and L. Zhang, The electronic and magnetic properties of (Mn, N)-codoped ZnO from first principles, J. Appl. Phys. 108(11), 113924 (2010)
https://doi.org/10.1063/1.3511365
167
K. Wu, S. Gu, K. Tang, J. Ye, S. Zhu, M. Zhou, Y. Huang, M. Xu, R. Zhang, and Y. Zheng, Temperaturedependent magnetization in (Mn, N)-codoped ZnObased diluted magnetic semiconductors, J. Magn. Magn. Mater. 324(8), 1649 (2012)
https://doi.org/10.1016/j.jmmm.2011.12.030
168
J. Gaines, R. Drenten, K. Haberern, T. Marshall, P. Mensz, and J. Petruzzello, Blue-green injection lasers containing pseudomorphic Zn1−xMgxSySe1−y cladding layers and operating up to 394 K, Appl. Phys. Lett. 62(20), 2462 (1993)
https://doi.org/10.1063/1.109319
169
P. Mensz, S. Herko, K. Haberern, J. Gaines, and C. Ponzoni, Electrical characterization of p-type ZnSe:N andZn1−xMgxSySe1−y:N thin films, Appl. Phys. Lett. 63(20), 2800 (1993)
https://doi.org/10.1063/1.110339
170
S. M. Myers, M. Baskes, H. Birnbaum, J. W. Corbett, G. DeLeo, S. Estreicher, E. E. Haller, P. Jena, N. M. Johnson, R. Kirchheim, S. J. Pearton, and M. J. Stavola, Hydrogen interactions with defects in crystallinesolids, Rev. Mod. Phys. 64(2), 559 (1992)
https://doi.org/10.1103/RevModPhys.64.559
M. McCluskey, N. Johnson, C. G. Van de Walle, D. P. Bour, M. Kneissl, and W. Walukiewicz, Metastability of oxygen donors in AlGaN, Phys. Rev. Lett. 80(18), 4008 (1998)
https://doi.org/10.1103/PhysRevLett.80.4008
173
J. I. Pankove and N. M. Johnson (<Eds/>.), Hydrogen in Semiconductors, Hydrogen in SiliconVolume34 (1991)
S. Nakamura, Nobel Lecture: Background story of the invention of efficient blue InGaN light emitting diodes, Rev. Mod. Phys. 87(4), 1139 (2015)
https://doi.org/10.1103/RevModPhys.87.1139
176
H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, Ptype conduction in Mg-doped GaN treated with lowenergy electron beam irradiation (LEEBI), Jpn. J. Appl. Phys. 28, L2112 (1989)
https://doi.org/10.1143/JJAP.28.L2112
177
S. Nakamura, N. Iwasa, M. Senoh, and T. Mukai, Hole compensation mechanism of p-type GaN films, Jpn. J. Appl. Phys. 31, 1258 (1992)
https://doi.org/10.1143/JJAP.31.1258
178
A. Marinopoulos, Incorporation and migration of hydrogen in yttria-stabilized cubic zirconia: Insights from semilocal and hybrid-functional calculations, Phys. Rev. B 86(15), 155144 (2012)
https://doi.org/10.1103/PhysRevB.86.155144
179
S. K. Estreicher, Hydrogen-related defects in crystalline semiconductors: A theorist’s perspective, Mater. Sci. Eng. Rep. 14(7–8), 319 (1995)
https://doi.org/10.1016/0927-796X(95)00178-6
180
M. Stutzmann and J. Chevallier (<Eds/>.), Hydrogen in semiconductors: Bulk and surface properties, Physica B 170, 1 (1991)
181
S. J. Pearton, J. W. Corbett, and M. Stavola, Hydrogen in crystalline semiconductors, Appl. Phys. A 43(3), 153 (1987)
https://doi.org/10.1007/BF00615975
182
A. J. Morris, C. J. Pickard, and R. Needs, Hydrogen/ silicon complexes in silicon from computational searches, Phys. Rev. B 78(18), 184102 (2008)
https://doi.org/10.1103/PhysRevB.78.184102
183
A. J. Morris, C. J. Pickard, and R. Needs, Hydrogen/ nitrogen/oxygen defect complexes in silicon from computational searches, Phys. Rev. B 80(14), 144112 (2009)
https://doi.org/10.1103/PhysRevB.80.144112
184
A. Peles, A. Janotti, and C. Van de Walle, Electrical activity of hydrogen impurities in GaSb: First-principles calculations, Phys. Rev. B 78(3), 035204 (2008)
https://doi.org/10.1103/PhysRevB.78.035204
185
V. Darakchieva, K. Lorenz, N. Barradas, E. Alves, B. Monemar, M. Schubert, N. Franco, C. Hsiao, L. Chen, W. Schaff, L. W. Tu, T. Yamaguchi, and Y. Nanishi, Hydrogen in InN: A ubiquitous phenomenon in molecular beam epitaxy grown material, Appl. Phys. Lett. 96(8), 081907 (2010)
https://doi.org/10.1063/1.3327333
186
D. Dagnelund, X. Wang, C. Tu, A. Polimeni, M. Capizzi, W. Chen, and I. Buyanova, Effect of postgrowth hydrogen treatment on defects in GaNP, Appl. Phys. Lett. 98(14), 141920 (2011)
https://doi.org/10.1063/1.3576920
187
D. Dagnelund, I. Vorona, G. Nosenko, X. Wang, C. Tu, H. Yonezu, A. Polimeni, M. Capizzi, W. Chen, and I. Buyanova, Effects of hydrogenation on non-radiative defects in GaNP and GaNAs alloys: An optically detected magnetic resonance study, J. Appl. Phys. 111(2), 023501 (2012)
https://doi.org/10.1063/1.3676576
188
N. Balakrishnan, G. Pettinari, O. Makarovsky, L. Turyanska, M. Fay, M. De Luca, A. Polimeni, M. Capizzi, F. Martelli, S. Rubini, and A. Patanè, Band-gap profiling by laser writing of hydrogen-containing III-N-Vs, Phys. Rev. B 86(15), 155307 (2012)
https://doi.org/10.1103/PhysRevB.86.155307
189
M. Feneberg, N. T. Son, and A. Kakanakova-Georgieva, Exciton luminescence in AlN triggered by hydrogen and thermal annealing, Appl. Phys. Lett. 106(24), 242101 (2015)
https://doi.org/10.1063/1.4922723
190
M. Choi, A. Janotti, and C. G. Van de Walle, Hydrogen passivation of impurities in Al2O3, ACS Appl. Mater. Interfaces 6(6), 4149 (2014)
https://doi.org/10.1021/am4057997
191
R. Vidya, P. Ravindran, and H. Fjellvåg, Understanding H-defect complexes in ZnO, arXiv: 1309. 5217 (2013)
192
X. Li, B. Keyes, S. Asher, S. Zhang, S. Wei, T. J. Coutts, S. Limpijumnong, and C. G. Van de Walle, Hydrogen passivation effect in nitrogen-doped ZnO thin films, Appl. Phys. Lett. 86(12), 122107 (2005)
https://doi.org/10.1063/1.1886256
193
X. Li, S. E. Asher, S. Limpijumnong, B. M. Keyes, C. L. Perkins, T. M. Barnes, H. R. Moutinho, J. M. Luther, S. Zhang, S. Wei, and T. J. Coutts, Impurity effects in ZnO and nitrogen-doped ZnO thin films fabricated by MOCVD, J. Cryst. Growth 287(1), 94 (2006)
https://doi.org/10.1016/j.jcrysgro.2005.10.050
194
S. Lin, H. He, Y. Lu, and Z. Ye, Mechanism of Nadoped p-type ZnO films: Suppressing Na interstitials by codoping with H and Na of appropriate concentrations, J. Appl. Phys. 106(9), 093508 (2009)
https://doi.org/10.1063/1.3254221
195
F. Filippone, G. Mattioli, P. Alippi, and A. AmoreBonapasta, Properties of hydrogen and hydrogen– vacancy complexes in the rutile phase of titanium dioxide, Phys. Rev. B 80(24), 245203 (2009)
https://doi.org/10.1103/PhysRevB.80.245203
196
H. Pan, Y. Zhang, V. B. Shenoy, and H. Gao, Effects of H-, N-, and (H, N)-doping on the photocatalytic activity of TiO2, J. Phys. Chem. C 115(24), 12224 (2011)
https://doi.org/10.1021/jp202385q
M. Assadi, Y. Zhang, and S. Li, Hydrogen multicenter bond mediated magnetism in Co doped ZnO, J. Phys.: Condens. Matter 22(15), 156001 (2010)
https://doi.org/10.1088/0953-8984/22/15/156001
199
K. Wu, S. Gu, K. Tang, J. Ye, S. Zhu, M. Zhou, Y. Huang, M. Xu, R. Zhang, and Y. Zheng, Hydrogen diffusion behavior and its effect on magnetic properties in (Mn, N)-codoped ZnO, Physica B 454, 115 (2014)
https://doi.org/10.1016/j.physb.2014.07.072
S. Nehra, M. Jangid, S. Srivastava, A. Kumar, B. Tripathi, M. Singh, and Y. Vijay, Role of hydrogen in electrical and structural characteristics of bilayer CdTe/Mn diluted magnetic semiconductor thin films, Int. J. Hydrogen Energy 34(17), 7306 (2009)
https://doi.org/10.1016/j.ijhydene.2009.06.054
202
S. Nehra and M. Singh, Effect of vacuum annealing and hydrogenation on ZnSe/Mn multilayer diluted magnetic semiconductor thin films, Vacuum 85(7), 719 (2011)
https://doi.org/10.1016/j.vacuum.2010.10.007
203
R. Nazarov, T. Hickel, and J. Neugebauer, Firstprinciples study of the thermodynamics of hydrogenvacancy interaction in fcc iron, Phys. Rev. B 82(22), 224104 (2010)
https://doi.org/10.1103/PhysRevB.82.224104
204
Y. Tateyama and T. Ohno, Stability and clusterization of hydrogen-vacancy complexes in-Fe: An ab initio study, Phys. Rev. B 67(17), 174105 (2003)
https://doi.org/10.1103/PhysRevB.67.174105
O. Y. Vekilova, D. Bazhanov, S. Simak, and I. Abrikosov, First-principles study of vacancy-hydrogen interaction in Pd, Phys. Rev. B 80(2), 024101 (2009)
https://doi.org/10.1103/PhysRevB.80.024101
207
W. Theis, K. Bajaj, C. Litton, and W. Spitzer, Direct evidence for the site of substitutional carbon impurity in GaAs, Appl. Phys. Lett. 41(1), 70 (1982)
https://doi.org/10.1063/1.93333
208
J. Geisz, D. Friedman, J. Olson, S. R. Kurtz, and B. Keyes, Photocurrent of 1eV GaInNAs lattice-matched to GaAs, J. Cryst. Growth 195(1–4), 401 (1998)
https://doi.org/10.1016/S0022-0248(98)00563-6
209
C. Seager, A. Wright, J. Yu, and W. Götz, Role of carbon in GaN, J. Appl. Phys. 92(11), 6553 (2002)
https://doi.org/10.1063/1.1518794
210
M. McCluskey, E. Haller, and P. Becla, Carbon acceptors and carbon-hydrogen complexes in AlSb, Phys. Rev. B 65(4), 045201 (2001)
https://doi.org/10.1103/PhysRevB.65.045201
211
M. Strassburg, J. Senawiratne, N. Dietz, U. Haboeck, A. Hoffmann, V. Noveski, R. Dalmau, R. Schlesser, and Z. Sitar, The growth and optical properties of large, high-quality AlN single crystals, J. Appl. Phys. 96(10), 5870 (2004)
https://doi.org/10.1063/1.1801159
212
J. Lyons, A. Janotti, and C. Van de Walle, Carbon impurities and the yellow luminescence in GaN, Appl. Phys. Lett. 97(15), 152108 (2010)
https://doi.org/10.1063/1.3492841
213
J. Lyons, A. Janotti, and C. Van de Walle, Effects of carbon on the electrical and optical properties of InN, GaN, and AlN, Phys. Rev. B 89(3), 035204 (2014)
https://doi.org/10.1103/PhysRevB.89.035204
214
S. G. Christenson, W. Xie, Y. Sun, and S. Zhang, Carbon as a source for yellow luminescence in GaN: Isolated CN defect or its complexes, J. Appl. Phys. 118(13), 135708 (2015)
https://doi.org/10.1063/1.4932206
215
K. Tang, S. Gu, S. Zhu, J. Liu, H. Chen, J. Ye, R. Zhang, and Y. Zheng, Suppression of compensation from nitrogen and carbon related defects for p-type N-doped ZnO, Appl. Phys. Lett. 95(19), 192106 (2009)
https://doi.org/10.1063/1.3262965
216
A. Marzouki, A. Lusson, F. Jomard, A. Sayari, P. Galtier, M. Oueslati, and V. Sallet, SIMS and Raman characterizations of ZnO:N thin films grown by MOCVD, J. Cryst. Growth 312(21), 3063 (2010)
https://doi.org/10.1016/j.jcrysgro.2010.07.030
217
J. Liu, S. Gu, S. Zhu, K. Tang, X. Liu, H. Chen, and Y. Zheng, The influences of O/Zn ratio and growth temperature on carbon impurity incorporation in ZnO grown by metal-organic chemical vapor deposition, J. Cryst. Growth 312(19), 2710 (2010)
https://doi.org/10.1016/j.jcrysgro.2010.06.016
218
A. Marzouki, A. Sayari, F. Jomard, V. Sallet, A. Lusson, and M. Oueslati, Carrier gas and VI/II ratio effects on carbon clusters incorporation into ZnO films grown by MOCVD, Mater. Sci. Semicond. Process. 16(3), 1022 (2013)
https://doi.org/10.1016/j.mssp.2013.02.020
219
H. Mao, S. Gu, J. Ye, K. Tang, R. Gu, S. Zhu, S. Huang, Z. Yao, and Y. Zheng, Comparative study of the effect of H2 addition on ZnO films grown by different zinc and oxygen precursors, J. Mater. Res. 30(07), 935 (2015)
https://doi.org/10.1557/jmr.2015.81
220
K. Tang, S. Gu, S. Zhu, W. Liu, J. Ye, J. Zhu, R. Zhang, Y. Zheng, and X. Sun, Carbon clusters in N-doped ZnO by metal-organic chemical vapor deposition, Appl. Phys. Lett. 93(13), 132107 (2008)
https://doi.org/10.1063/1.2992197
221
H. Chen, S. Gu, W. Liu, S. Zhu, and Y. Zheng, Influence of unintentional doped carbon on growth and properties of N-doped ZnO films, J. Appl. Phys. 104(11), 113511 (2008)
https://doi.org/10.1063/1.3033547
222
N. Nickel, F. Friedrich, J. Rommeluère, and P. Galtier, Vibrational spectroscopy of undoped and nitrogendoped ZnO grown by metalorganic chemical vapor deposition, Appl. Phys. Lett. 87(21), 211905 (2005)
https://doi.org/10.1063/1.2133917
223
X. Li, S. E. Asher, S. Limpijumnong, S. Zhang, S. Wei, T. M. Barnes, T. J. Coutts, and R. Noufi, Unintentional doping and compensation effects of carbon in metalorganic chemical-vapor deposition fabricated ZnO thin films, J. Vac. Sci. Technol. A 24(4), 1213 (2006)
https://doi.org/10.1116/1.2167981
224
L. L. Kerr, X. Li, M. Canepa, and A. J. Sommer, Raman analysis of nitrogen doped ZnO, Thin Solid Films 515(13), 5282 (2007)
https://doi.org/10.1016/j.tsf.2006.12.186
225
S. Limpijumnong, X. Li, S. Wei, and S. Zhang, Substitutional diatomic molecules NO, NC, CO, N2, and O2: Their vibrational frequencies and effects on p doping of ZnO, Appl. Phys. Lett. 86(21), 211910 (2005)
https://doi.org/10.1063/1.1931823
226
K. Wu, S. Gu, K. Tang, S. Zhu, J. Ye, R. Zhang, and Y. Zheng, Influences of unintentionally doped carbon on magnetic properties in Mn–N co-doped ZnO, Thin Solid Films 519(8), 2499 (2011)
https://doi.org/10.1016/j.tsf.2010.12.006
227
S. Tan, X. Sun, Z. Yu, P. Wu, G. Lo, and D. Kwong, p-type conduction in unintentional carbon-doped ZnO thin films, Appl. Phys. Lett. 91(7), 072101 (2007)
https://doi.org/10.1063/1.2768917
228
M. Yoshikawa, S. Ueda, K. Maruyama, and H. Takigawa, The behavior of oxygen in HgCdTe, J. Vac. Sci. Technol. A 3(1), 153 (1985)
https://doi.org/10.1116/1.573189
229
M. Toth, K. Fleischer, and M. Phillips, Direct experimental evidence for the role of oxygen in the luminescent properties of GaN, Phys. Rev. B 59(3), 1575 (1999)
https://doi.org/10.1103/PhysRevB.59.1575
230
H. W. Jang, J. M. Baik, M. Lee, H. Shin, and J. Lee, Incorporation of oxygen donors in AlGaN, J. Electrochem. Soc. 151(8), G536 (2004)
https://doi.org/10.1149/1.1768951
231
S. Das Bakshi, J. Sumner, M. J. Kappers, and R. A. Oliver, The influence of coalescence time on unintentional doping in GaN/sapphire, J. Cryst. Growth 311(2), 232 (2009)
https://doi.org/10.1016/j.jcrysgro.2008.11.015
232
B. Mitchell, D. Timmerman, Z. Wiaxing, J. Takatsu, M. Matsuda, K. Lorenz, E. Alves, A. Koizumi, Y. Fujiwara, and V. Dierolf, The role of oxygen on the nature and stability of Eu centers in Eu doped gallium nitride, APS March Meeting 2015, abstract #F14.007
233
C. King, R. Johnson, T. Chiu, J. Sung, and M. Morris, Suppression of arsenic autodoping with rapid thermal epitaxy for low power bipolar complementary metal oxide semiconductor, J. Electrochem. Soc. 142(7), 2430 (1995)
https://doi.org/10.1149/1.2044315
234
Van de Wallea, G. Chris, and J. Neugebauer, Arsenic impurities in GaN, Appl. Phys. Lett. 8, 76 (2000)
235
H. Kim, F. J. Fälth, and T. G. Andersson, Unintentional incorporation of B, As, and O impurities in GaN grown by molecular beam epitaxy, J. Electron. Mater. 30(10), 1343 (2001)
https://doi.org/10.1007/s11664-001-0122-z
236
R. Vidya, P. Ravindran, H. Fjellvåg, B. Svensson, E. Monakhov, M. Ganchenkova, and R. Nieminen, Energetics of intrinsic defects and their complexes in ZnO investigated by density functional calculations, Phys. Rev. B 83(4), 045206 (2011)
https://doi.org/10.1103/PhysRevB.83.045206
237
Y. Lu, S. Russo, and Y. Feng, Effect of nitrogen and intrinsic defect complexes on conversion efficiency of ZnO for hydrogen generation from water, Phys. Chem. Chem. Phys. 13(35), 15973 (2011)
https://doi.org/10.1039/c1cp20908f
238
S. Chen, J. Yang, X. Gong, A. Walsh, and S. Wei, Intrinsic point defects and complexes in the quaternary kesterite semiconductor Cu2ZnSnS4, Phys. Rev. B 81(24), 245204 (2010)
https://doi.org/10.1103/PhysRevB.81.245204
H. Van der Vegt, H. Van Pinxteren, M. Lohmeier, E. Vlieg, and J. Thornton, Surfactant-induced layer-bylayer growth of Ag on Ag(111), Phys. Rev. Lett. 68(22), 3335 (1992)
https://doi.org/10.1103/PhysRevLett.68.3335
241
G. Rosenfeld, R. Servaty, C. Teichert, B. Poelsema, and G. Comsa, Layer-by-layer growth of Ag on Ag(111) induced by enhanced nucleation: A model study for surfactant-mediated growth, Phys. Rev. Lett. 71(6), 895 (1993)
https://doi.org/10.1103/PhysRevLett.71.895
242
J. Meyer, J. Vrijmoeth, H. Van der Vegt, E. Vlieg, and R. Behm, Importance of the additional step-edge barrier in determining film morphology during epitaxial growth, Phys. Rev. B 51(20), 14790 (1995)
https://doi.org/10.1103/PhysRevB.51.14790
243
B. Voigtländer, A. Zinner, T. Weber, and H. P. Bonzel, Modification of growth kinetics in surfactant-mediated epitaxy, Phys. Rev. B 51(12), 7583 (1995)
https://doi.org/10.1103/PhysRevB.51.7583
244
S. Tanaka, S. Iwai, and Y. Aoyagi, Self-assembling GaN quantum dots on AlxGa1−xN surfaces using a surfactant, Appl. Phys. Lett. 69(26), 4096 (1996)
https://doi.org/10.1063/1.117830
245
E. Rudkevich, F. Liu, D. Savage, T. Kuech, L. Mc- Caughan, and M. Lagally, Hydrogen induced Si surface segregation on Ge-covered Si(001), Phys. Rev. Lett. 81(16), 3467 (1998)
https://doi.org/10.1103/PhysRevLett.81.3467
246
M. Pillai, S. Kim, S. Ho, and S. Barnett, Growth of InxGa1−xAs/GaAs heterostructures using Bi as a surfactant, J. Vac. Sci. Technol. B 18(3), 1232 (2000)
https://doi.org/10.1116/1.591367
247
C. Fetzer, R. Lee, J. Shurtleff, G. Stringfellow, S. Lee, and T. Seong, The use of a surfactant (Sb) to induce triple period ordering in GaInP, Appl. Phys. Lett. 76(11), 1440 (2000)
https://doi.org/10.1063/1.126057
248
A. Howard and G. Stringfellow, Effects of low surfactant Sb coverage on Zn and C incorporation in GaP, J. Appl. Phys. 102(7), 074920 (2007)
https://doi.org/10.1063/1.2778635
249
J. Zhu, F. Liu, and G. Stringfellow, Dual-surfactant effect to enhance p-type doping in III-V semiconductor thin films,Phys. Rev. Lett. 101(19), 196103 (2008)
https://doi.org/10.1103/PhysRevLett.101.196103
J. Zhu, F. Liu, and G. Stringfellow, Enhanced cationsubstituted p-type doping in GaP from dual surfactant effects, J. Cryst. Growth 312(2), 174 (2010)
https://doi.org/10.1016/j.jcrysgro.2009.10.031
253
A. Howard, D. Chapman, and G. Stringfellow, Effects of surfactants Sb and Bi on the incorporation of zinc and carbon in III/V materials grown by organometallic vapor-phase epitaxy, J. Appl. Phys. 100(4), 044904 (2006)
https://doi.org/10.1063/1.2227707
254
T. Sato, M. Mitsuhara, R. Iga, S. Kanazawa, and Y. Inoue, Influence of Sb surfactant on carrier concentration in heavily Zn-doped InGaAs grown by metalorganic vapor phase epitaxy, J. Cryst. Growth 315(1), 64 (2011)
https://doi.org/10.1016/j.jcrysgro.2010.08.029
V. Wagener, M. Wagener, and J. Botha, Electrical characteristics of cadmium doped InAs grown by metalorganic vapor phase epitaxy, J. Appl. Phys. 111(2), 023707 (2012)
https://doi.org/10.1063/1.3678452
257
S. Kahwaji, R. Gordon, E. Crozier, S. Roorda, M. Robertson, J. Zhu, and T. Monchesky, Surfactantmediated growth of ferromagnetic Mn d-doped Si, Phys. Rev. B 88(17), 174419 (2013)
https://doi.org/10.1103/PhysRevB.88.174419
258
J. Zhu, F. Liu, G. Stringfellow, and S. Wei, Strainenhanced doping in semiconductors: Effects of dopant size and charge state, Phys. Rev. Lett. 105(19), 195503 (2010)
https://doi.org/10.1103/PhysRevLett.105.195503
259
J. Zhu and S. Wei, Tuning doping site and type by strain: Enhanced p-type doping in Li doped ZnO, Solid State Commun. 151(20), 1437 (2011)
https://doi.org/10.1016/j.ssc.2011.07.003
260
B. Deng, Y. Zhang, S. Zhang, Y. Wang, K. He, and J. Zhu, Realization of stable ferromagnetic order in topological insulator: Co-doping enhanced magnetism in 4f transition metal doped Bi2Se3, arXiv: 1511.08646 (2015)
261
J. L. Merrell, F. Liu, and G. B. Stringfellow, Effect of surfactant Sb on In incorporation and thin film morphology of InGaN layers grown by organometallic vapor phase epitaxy, J. Cryst. Growth 375, 90 (2013)
https://doi.org/10.1016/j.jcrysgro.2013.04.003
262
Y. Zhang and J. Zhu, Surfactant antimony enhanced indium incorporation on InGaN (0001) surface: A DFT study, J. Cryst. Growth 438, 43 (2016)
https://doi.org/10.1016/j.jcrysgro.2015.12.034