Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2016, Vol. 11 Issue (6): 117502   https://doi.org/10.1007/s11467-016-0584-3
  本期目录
Interfacial phase competition induced Kondo-like effect in manganite-insulator composites
Ling-Fang Lin1,Ling-Zhi Wu2,Shuai Dong1,*()
1. Department of Physics, Southeast University, Nanjing 211189, China
2. School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, Nanjing 210046, China
 全文: PDF(769 KB)  
Abstract

A Kondo-like effect, namely, the upturn of resistivity at low temperatures, is observed in perovskite manganite when nonmagnetic insulators are doped as secondary phase. In this paper, the low-temperature resistivity upturn effect has been argued to originate from interfacial magnetic phase reconstruction. Heisenberg spin lattices have been simulated using the Monte Carlo method to reveal phase competition around secondary phase boundary, namely, manganite-insulator boundary that behaves with a weak antiferromagnetic tendency. Moreover, the resistor network model based on double-exchange conductive mechanism reproduces the low-temperature resistivity upturn effect. Our work provides a reasonable physical mechanism to understand the novel transport behaviors in microstructures of correlated electron systems.

Key wordsmanganite    Kondo-like effect    manganite-insulator composites    phase competition
收稿日期: 2016-02-26      出版日期: 2016-05-30
Corresponding Author(s): Shuai Dong   
 引用本文:   
. [J]. Frontiers of Physics, 2016, 11(6): 117502.
Ling-Fang Lin, Ling-Zhi Wu, Shuai Dong. Interfacial phase competition induced Kondo-like effect in manganite-insulator composites. Front. Phys. , 2016, 11(6): 117502.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-016-0584-3
https://academic.hep.com.cn/fop/CN/Y2016/V11/I6/117502
1 H. M. Zhang, M. An, X. Y. Yao, and S. Dong, Orientation-dependent ferroelectricity of strained PbTiO3 films, Front. Phys. 10(6), 107701 (2015)
https://doi.org/10.1007/s11467-015-0512-y
2 E. Dagotto, T. Hotta, and A. Moreo, Colossal magnetoresistant materials: The key role of phase separation, Phys. Rep. 344(1), 1 (2001)
https://doi.org/10.1016/S0370-1573(00)00121-6
3 Y. Tokura, Critical features of colossal magnetoresistive manganites, Rep. Prog. Phys. 69(3), 797 (2006)
https://doi.org/10.1088/0034-4885/69/3/R06
4 C. Şen, G. Alvarez, and E. Dagotto, Competing ferromagnetic and charge-ordered states in models for manganites: The origin of the colossal magnetoresistance effect, Phys. Rev. Lett. 98(12), 127202 (2007)
https://doi.org/10.1103/PhysRevLett.98.127202
5 C. Şen, G. Alvarez, and E. Dagotto, First order colossal magnetoresistance transitions in the two-orbital model for manganites, Phys. Rev. Lett. 105(9), 097203 (2010)
https://doi.org/10.1103/PhysRevLett.105.097203
6 M. An, H. M. Zhang, Y. K. Weng, Y. Zhang, and S. Dong, Possible ferrimagnetism and ferroelectricity of half-substituted rare-earth titanate: A first-principles study on Y0.5La0.5TiO3, Front. Phys. 11(2), 117501 (2016)
https://doi.org/10.1007/s11467-015-0535-4
7 M. Staruch, H. Gao, P. X. Gao, and M. Jain, Low-field magnetoresistance in La0.67Sr0.33MnO3: ZnO composite film, Adv. Func. Mater. 22(17), 3591 (2012)
https://doi.org/10.1002/adfm.201200489
8 Y. K. Tang, X. F. Ge, X. F. Si, W. J. Zhao, Y. Wang, S. Dong, Y. Zhai, Y. Sui, W. H. Su, and C. C. Almasan, Influence of magnetic correlations on low-field magnetoresistance in La2/3Sr1/3MnO3/SrTiO3 composites, Phys. Status Solidi A 210(6), 1195 (2013)
https://doi.org/10.1002/pssa.201228538
9 Y. Gao, G. X. Cao, J. Zhang, and H. U. Habermeier, Intrinsic and precipitate-induced quantum corrections to conductivity in La2/3Sr1/3MnO3 thin films, Phys. Rev. B. 85(19), 195128 (2012)
https://doi.org/10.1103/PhysRevB.85.195128
10 G. X. Cao, J. C. Zhang, S. X Cao, C. Jing, and X. C. Shen, Magnetization step, history-dependence, and possible spin quantum transition in Pr5/8Ca3/8MnO3, Phys. Rev. B. 71(17), 174414 (2005)
https://doi.org/10.1103/PhysRevB.71.174414
11 J. Kondo, Resistance minimum in dilute magnetic alloys, Prog. Theor. Phys. 32(1), 37–49 (1964)
https://doi.org/10.1143/PTP.32.37
12 E. Rozenberg, M. Auslender, I. Felner, and G. Gorodetsky, Low-temperature resistivity minimum in ceramic manganites, J. Appl. Phys. 88, 2578–2582 (2000)
https://doi.org/10.1063/1.1288704
13 T. A. Costi, Kondo effect in a magnetic field and the magnetoresistivity of Kondo alloys, Phys. Rev. Lett. 85(7), 1504 (2000)
https://doi.org/10.1103/PhysRevLett.85.1504
14 J. Zhang, Y. Xu, L. Yu, S. Cao, and Y. Zhao, Resistivity minimum and the electronic strongly correlation characteristic for La2/3Sr1/3MnO3 thin film, Physica B. 403(5), 1471–1473 (2008)
https://doi.org/10.1016/j.physb.2007.10.303
15 Y. Matsushita, H. Bluhm, T. H. Geballe, and I. R. Fisher, Evidence for charge Kondo effect in superconducting Tl-Doped PbTe, Phys. Rev. Lett. 94(15), 157002 (2005)
https://doi.org/10.1103/PhysRevLett.94.157002
16 M. Ziese, Searching for quantum interference effects in La0.7Ca0.3MnO3 films on SrTiO3, Phys. Rev. B. 68(13), 132411 (2003)
https://doi.org/10.1103/PhysRevB.68.132411
17 D. Kumar, J. Sankar, J. Narayan, R. K. Singh, and A. K. Majumdar, Low-temperature resistivity minima in colossal magnetoresistive La0.7Ca0.3MnO3 thin films, Phys. Rev.B. 65(9), 094407 (2002)
https://doi.org/10.1103/PhysRevB.65.094407
18 E. Syskakis, G. Choudalakis, and C. Papastaikoudis, Crossover between Kondo and electron–electron interaction effects in La0.75Sr0.20MnO3 manganite doped with Co impurities? J. Phys.: Condens. Matter 15(12), 7735 (2003)
https://doi.org/10.1088/0953-8984/15/45/013
19 L. Brey, Electronic phase separation in manganite-insulator interfaces, Phys. Rev. B 75(10), 104423 (2007)
https://doi.org/10.1103/PhysRevB.75.104423
20 H. W. Guo, J. H. Noh, S. Dong, P. D. Rack, Z. Gai, X. S. Xu, E. Dagotto, J. Shen, and T. Z. Ward, Electrophoretic-like gating used to control metal-insulator transitions in electronically phase separated manganite Wires, Nano Lett. 13(8), 3749 (2013)
https://doi.org/10.1021/nl4016842
21 W. G. Wei, Y. Y. Zhu, Y. Bai, H. Liu, K. Du, K. Zhang, Y. F. Kou, J. Shao, W. B. Wang, D. L. Hou, S. Dong, L. F. Yin, and J. Shen, Direct observation of current-induced conductive path in colossal-electroresistance manganites thin films, Phys. Rev. B 93, 035111 (2016)
https://doi.org/10.1103/PhysRevB.93.035111
22 S. Dong, H. Zhu, X. Wu, and J. M. Liu, Microscopic simulation of the percolation of manganites, Appl. Phys. Lett. 86(2), 022501 (2005)
https://doi.org/10.1063/1.1848184
23 S. Dong, H. Zhu, and J. M. Liu, Dielectrophoresis model for the colossal electroresistance of phase-separated manganites, Phys. Rev. B. 76(13), 132409 (2007)
https://doi.org/10.1103/PhysRevB.76.132409
24 S. Ju, T. Y. Cai, and Z. Y. Li, Percolative magnetotransport and enhanced intergranular magnetoresistance in a correlated resistor network, Phys. Rev. B. 72(18), 184413 (2005)
https://doi.org/10.1103/PhysRevB.72.184413
25 L. F. Lin, X. Huang, and S. Dong, Simulation of the magnetoresistance of Heisenberg spin lattices using the resistor-network model, Chin. Phys. B 22(11), 117313 (2013)
https://doi.org/10.1088/1674-1056/22/11/117313
26 D. P. Landau and K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics, Ed. 3, Cambridge: Cambridge University Press, 2014
https://doi.org/10.1017/CBO9781139696463
27 S. H. Tsai and D. P. Landau, Simulations of a classical spin system with competing superexchange and double-exchange interactions, J. Appl. Phys. 87(9), 5807 (2000)
https://doi.org/10.1063/1.372529
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed