Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2016, Vol. 11 Issue (6): 114702   https://doi.org/10.1007/s11467-016-0587-0
  本期目录
Shape effect of nanochannels on water mobility
Guo-Xi Nie1,*(),Yu Wang2,*(),Ji-Ping Huang1,*()
1. Department of Physics, State Key Laboratory of Surface Physics, and Collaborative Innovation Center of Advanced Microstructures, Fudan University, Shanghai 200433, China
2. Department of Physics, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
 全文: PDF(10464 KB)  
Abstract

Confinement can induce unusual behaviors of water. Inspired by the fabrication of carbon nanotubes with noncircular cross sections, we performed molecular dynamics simulations to investigate the mobilities of water confined in carbon nanochannels with circular, square, and equilateral triangular cross sections over a variety of dimensions. We find that water exhibits disparate mobilities across different types of channels below 0.796 nm2. Notably, compared with the other two channels, water in equilateral triangular channels displays the greatest mobilities. Moreover, at 0.425 nm2, different ordered structures are found in the three channels, and water inside the square channel exhibits an extremely low mobility. It is also found that above 0.796 nm2, the mobilities along the tube axis of water converge to that of the bulk. These phenomena are understood by analyzing the structure, dynamics, and hydrogen bonding of water. Our work explores the mobilities of water across noncircular carbon nanochannels, which may expand the prospect of noncircular nanochannels in scientific studies and practical applications, such as desalination and drug delivery.

Key wordsmolecular dynamics simulations    mobility    noncircular    nanochannel    water
收稿日期: 2016-02-20      出版日期: 2016-06-06
Corresponding Author(s): Guo-Xi Nie,Yu Wang,Ji-Ping Huang   
 引用本文:   
. [J]. Frontiers of Physics, 2016, 11(6): 114702.
Guo-Xi Nie,Yu Wang,Ji-Ping Huang. Shape effect of nanochannels on water mobility. Front. Phys. , 2016, 11(6): 114702.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-016-0587-0
https://academic.hep.com.cn/fop/CN/Y2016/V11/I6/114702
1 Karttunen2010JPCB. K. Kaszuba, T. Rog, K. Bryl, I. Vattulainen, and M. Karttunen, Molecular dynamics simulations reveal fundamental role of water as factor determining affinity of binding of beta-blocker nebivolol to beta(2)-adrenergic receptor, J. Phys. Chem. B 114, 8374 (2010)
https://doi.org/10.1021/jp909971f
2 B. L. de Groot and H. Grubmuller, Water permeation across biological membranes: Mechanism and dynamics of aquaporin-1 and GlpF, Science 294, 2353 (2001)
https://doi.org/10.1126/science.1062459
3 X. Gong, J. Li, H. Zhang, R. Wan, H. Lu, S. Wang, and H. P. Fang, Enhancement of water permeation across a nanochannel by the structure outside the channel, Phys. Rev. Lett. 101, 257801 (2008)
https://doi.org/10.1103/PhysRevLett.101.257801
4 X. Y. Li, Y. C. Shi, Y. L. Yang, H. L. Du, R. H. Zhou, and Y. L. Zhao, How does water-nanotube interaction influence water flow through the nanochannel? J. Chem. Phys. 136, 175101 (2012)
https://doi.org/10.1063/1.4707346
5 M. F. L. De Volder, S. H. Tawfick, R. H. Baughman, and A. J. Hart, Carbon nanotubes: Present and future commercial applications, Science 339, 535 (2013)
https://doi.org/10.1126/science.1222453
6 D. Cohen-Tanugi and J. C. Grossman, Water desalination across nanoporous graphene, Nano Lett. 12, 3602 (2012).
https://doi.org/10.1021/nl3012853
7 R. Z. Wan, J. Y. Li, H. J. Lu, and H. P. Fang, Controllable water channel gating of nanometer dimensions, J. Am. Chem. Soc. 127, 7166 (2005)
https://doi.org/10.1021/ja050044d
8 Q. W. Chen, L. Y. Meng, Q. K. Li, D. Wang, W. Guo, Z. G. Shuai, and L. Jiang, Water transport and purification in nanochannels controlled by asymmetric wettability, Small 7, 2225 (2011)
https://doi.org/10.1002/smll.201100287
9 B. Corry, Water and ion transport through functionalised carbon nanotubes: Implications for desalination technology, Energy Environ. Sci. 4, 751 (2011)
https://doi.org/10.1039/c0ee00481b
10 B. Corry, Designing carbon nanotube membranes for efficient water desalination, J. Phys. Chem. B 112, 1427 (2008)
https://doi.org/10.1021/jp709845u
11 X. J. Gong, J. C. Li, K. Xu, J. F.Wang, and H. Yang, A controllable molecular sieve for Na+ andK+ ions, J. Am. Chem. Soc. 132, 1873 (2010)
https://doi.org/10.1021/ja905753p
12 J. Dzubiella and J. P. Hansen, Electric-field-controlled water and ion permeation of a hydrophobic nanopore, J. Chem. Phys. 122, 234706 (2005)
https://doi.org/10.1063/1.1927514
13 T. Panczyk, T. P. Warzocha, and P. J. Camp, A magnetically controlled molecular nanocontainer as a drug delivery system: The effects of carbon nanotube and magnetic nanoparticle parameters from Monte Carlo simulations, J. Phys. Chem. C 114, 21299 (2010)
https://doi.org/10.1021/jp1088405
14 Y. L. Zhao, Y. L. Song, W. G. Song, W. Liang, X. Y. Jiang, Z. Y. Tang, H. X. Xu, Z. X. Wei, Y. Q. Liu, M. H. Liu, L. Jiang, X. H. Bao, L. J. Wan, and C. L. Bai, Progress of nanoscience in China, Front. Phys. 9, 288 (2014)
https://doi.org/10.1007/s11467-013-0324-x
15 S. Cambre, B. Schoeters, S. Luyckx, E. Goovaerts, and W. Wenseleers, Experimental observation of single-file water filling of thin single-wall carbon nanotubes down to chiral index (5,3), Phys. Rev. Lett. 104, 207401 (2010)
https://doi.org/10.1103/PhysRevLett.104.207401
16 Y. Wang, Y. J. Zhao, and J. P. Huang, Giant pumping of single-file water molecules in a carbon nanotube, J. Phys. Chem. B 115, 13275 (2011)
https://doi.org/10.1021/jp2069557
17 H. Lu, J. Li, X. Gong, R. Wan, L. Zeng, and H. P. Fang, Water permeation and wavelike density distributions inside narrow nanochannels, Phys. Rev. B 77, 174115 (2008)
https://doi.org/10.1103/PhysRevB.77.174115
18 J. Y. Su and H. X. Guo, Control of unidirectional transport of single-file water molecules through carbon nanotubes in an electric field, ACS Nano 5, 351 (2011)
https://doi.org/10.1021/nn1014616
19 G. Hummer, J. C. Rasaiah, and J. P. Noworyta, Water conduction through the hydrophobic channel of a carbon nanotube, Nature 414, 188 (2001)
https://doi.org/10.1038/35102535
20 X. W. Meng, Y. Wang, Y. J. Zhao, and J. P. Huang, Gating of a water nanochannel driven by dipolar molecules, J. Phys. Chem. B 115, 4768 (2011)
https://doi.org/10.1021/jp2025297
21 J. Y. Li, X. J. Gong, H. J. Lu, D. Li, and R. H. Zhou, Electrostatic gating of a nanometer water channel, Proc. Natl. Acad. Sci. USA 104, 3687 (2007)
https://doi.org/10.1073/pnas.0604541104
22 X. J. Gong, J. Y. Li, H. J. Lu, R. Z. Wan, J. C. Li, J. Hu, and H. P. Fang, A charge-driven molecular water pump, Nature Nanotech. 2, 709 (2007)
https://doi.org/10.1038/nnano.2007.320
23 Y. B. Chen, Y. H. Liu, Y. Zeng, W. Mao, L. Hu, Z. L. Mao, and H. Q. Xu, Optimal aspect ratio of endocytosed spherocylindrical nanoparticle, Front. Phys. 10, 108702 (2015)
https://doi.org/10.1007/s11467-014-0444-y
24 R. García-Fandiño and M. S. P. Sansom, Designing biomimetic pores based on carbon nanotubes, Proc. Natl. Acad. Sci. USA 109, 6939 (2012)
https://doi.org/10.1073/pnas.1119326109
25 G. X. Guo, L. Zhang, and Y. Zhang, Molecular dynamics study of the infiltration of lipidwrapping C60 and polyhydroxylated single-walled nanotubes into lipid bilayers, Front. Phys. 10, 108601 (2015)
https://doi.org/10.1007/s11467-014-0440-2
26 X. Y. Zhou, F. M. Wu, J. L. Kou, X. C. Nie, Y. Liu, and H. J. Lu, Vibrating-charge-driven water pump controlled by the deformation of the carbon nanotube, J. Phys. Chem. B 117, 11681 (2013)
https://doi.org/10.1021/jp405036c
27 R. Qiao and N. R. Aluru, Atypical dependence of electroosmotic transport on surface charge in a single-wall carbon nanotube, Nano Lett. 3, 1013 (2003)
https://doi.org/10.1021/nl034236n
28 G. X. Nie, Y. Wang, and J. P. Huang, Role of confinement in water solidification under electric fields, Front. Phys. 10, 106101 (2015)
https://doi.org/10.1007/s11467-015-0504-y
29 T. Qiu and J. P. Huang, Unprecedentedly rapid transport of single-file rolling water molecules, Front. Phys. 10, 106102 (2015)
https://doi.org/10.1007/s11467-015-0511-z
30 K. Koga, G. T. Gao, H. Tanaka, and X. C. Zeng, Formation of ordered ice nanotubes inside carbon nanotubes, Nature 412, 802 (2001)
https://doi.org/10.1038/35090532
31 Y. Maniwa, H. Kataura, M. Abe, A. Udaka, S. Suzuki, Y. Achiba, H. Kira, K. Matsuda, H. Kadowaki, and Y. Okabe, Ordered water inside carbon nanotubes: Formation of pentagonal to octagonal ice-nanotubes, Chem. Phys. Lett. 401, 534 (2005)
https://doi.org/10.1016/j.cplett.2004.11.112
32 R. J. Mashl, S. Joseph, N. R. Aluru, and E. Jakobsson, Anomalously immobilized water: A new water phase induced by confinement in nanotubes, Nano Lett. 3, 589 (2003)
https://doi.org/10.1021/nl0340226
33 S. R. Venna and M. A. Carreon, Metal organic framework membranes for carbon dioxide separation, Chem. Eng. Sci. 124, 3 (2015)
https://doi.org/10.1016/j.ces.2014.10.007
34 P. Nugent, Y. Belmabkhout, S. D. Burd, A. J. Cairns, R. Luebke, K. Forrest, T. Pham, S. Q. Ma, B. Space, L. Wojtas, M. Eddaoudi, and M. J. Zaworotko, Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation, Nature 495, 80 (2013)
https://doi.org/10.1038/nature11893
35 S. Shirazian and S. N. Ashrafizadeh, Synthesis of substratemodified LTA zeolite membranes for dehydration of natural gas, Fuel 148, 112 (2015)
https://doi.org/10.1016/j.fuel.2015.01.086
36 G. Sneddon, A. Greenaway, and H. H. P. Yiu, The potential applications of nanoporous materials for the adsorption, separation, and catalytic conversion of carbon dioxide, Adv. Energy Mater. 4, 1301873 (2014)
https://doi.org/10.1002/aenm.201301873
37 K. Murata, K. Mitsuoka, T. Hirai, T. Walz, P. Agre, J. B. Heymann, A. Engel, and Y. Fujiyoshi, Structural determinants of water permeation through aquaporin-1, Nature 407, 599 (2000)
https://doi.org/10.1038/35036519
38 C. Q. Zhu, H. Li, and S. Meng, Transport behavior of water molecules through two-dimensional nanopores, J. Phys. Chem. 141, 18C528 (2014)
39 C. Q. Zhu, H. Li, X. C. Zeng, E. G. Wang, and S. Meng, Quantized water transport: Ideal desalination through graphyne-4 membrane, Sci. Rep. 3, 3163 (2013)
https://doi.org/10.1038/srep03163
40 T. Yanagishita, M. Sasaki, K. Nishio, and H. Masuda, Carbon nanotubes with a triangular cross-section, fabricated using anodic porous alumina as the template, Adv. Mater. 16, 429 (2004)
https://doi.org/10.1002/adma.200306012
41 F. Xu, J. E. Wharton, and C. R. Martin, Template synthesis of carbon nanotubes with diamond-shaped cross sections, Small 3, 1718 (2007)
https://doi.org/10.1002/smll.200700306
42 J. Zang, A. Treibergs, Y. Han, and F. Liu, Geometric constant defining shape transitions of carbon nanotubes under pressure, Phys. Rev. Lett. 92, 105501 (2004)
https://doi.org/10.1103/PhysRevLett.92.105501
43 W. H. Mu, J. S. Cao, and Z. C. Ou-Yang, Shape transition of unstrained flattest single-walled carbon nanotubes under pressure, J. Appl. Phys. 115, 044512 (2014)
https://doi.org/10.1063/1.4863455
44 A. Zobelli, A. Gloter, C. P. Ewels, and C. Colliex, Shaping single walled nanotubes with an electron beam, Phys. Rev. B 77, 045410 (2008)
https://doi.org/10.1103/PhysRevB.77.045410
45 G. F. Wu, J. L. Wang, X. C. Zeng, H. Hu, and F. Ding, Controlling cross section of carbon nanotubes via selective hydrogenation, J. Phys. Chem. C 114, 11753 (2010)
https://doi.org/10.1021/jp102005k
46 T. Qiu, X. W. Meng, and J. P. Huang, Nonstraight nanochannels transfer water faster than straight nanochannels, J. Phys. Chem. B 119, 1496 (2015)
https://doi.org/10.1021/jp511262w
47 L. Hao, J. Y. Su, and H. X. Guo, Water permeation through a charged channel, J. Phys. Chem. B 117, 7685 (2013)
https://doi.org/10.1021/jp400578u
48 B. Hess, C. Kutzner, D. Van De Spoel, and E. Lindahl, GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation, J. Chem. Theory. Comp. 4, 435 (2008)
https://doi.org/10.1021/ct700301q
49 H. J. C. Berendsen, J. R. Grigera, and T. P. Straatsma, The missing term in effective pair potentials, J. Phys. Chem. 91, 6269 (1987)
https://doi.org/10.1021/j100308a038
50 T. A. Darden, D. M. York, and L. G. Pedersen, Particle mesh Ewald: An N-log(N) method for Ewald sums in large systems, J. Chem. Phys. 98, 10089 (1993)
https://doi.org/10.1063/1.464397
51 S. Nosé, A unified formulation of the constant temperature molecular dynamics methods, J. Chem. Phys. 81, 511 (1984)
https://doi.org/10.1063/1.447334
52 W. G. Hoover, Canonical dynamics: Equilibrium phase-space distributions, Phys. Rev. A 31, 1695 (1985)
https://doi.org/10.1103/PhysRevA.31.1695
53 Z. J. He, J. Zhou, X. H. Lu, and B. Corry, Ice-like water structure in carbon nanotube (8,8) induces cationic hydration enhancement, J. Phys. Chem. C 117, 11412 (2013)
https://doi.org/10.1021/jp4025206
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed