Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2016, Vol. 11 Issue (6): 110402   https://doi.org/10.1007/s11467-016-0588-z
  本期目录
A new unified theory of electromagnetic and gravitational interactions
Li-Xin Li()
Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871, China
 全文: PDF(358 KB)  
Abstract

In this paper we present a new unified theory of electromagnetic and gravitational interactions. By considering a four-dimensional spacetime as a hypersurface embedded in a five-dimensional bulk spacetime, we derive the complete set of field equations in the four-dimensional spacetime from the fivedimensional Einstein field equation. Besides the Einstein field equation in the four-dimensional spacetime, an electromagnetic field equation is obtained: ∇aFab-ξRbaAa =−4πJb with ξ =−2, where Fab is the antisymmetric electromagnetic field tensor defined by the potential vector Aa, Rab is the Ricci curvature tensor of the hypersurface, and Ja is the electric current density vector. The electromagnetic field equation differs from the Einstein–Maxwell equation by a curvature-coupled term ξRbaAa, whose presence addresses the problem of incompatibility of the Einstein–Maxwell equation with a universe containing a uniformly distributed net charge, as discussed in a previous paper by the author [L.-X. Li, Gen. Relativ. Gravit. 48, 28 (2016)]. Hence, the new unified theory is physically different from Kaluza–Klein theory and its variants in which the Einstein–Maxwell equation is derived. In the four-dimensional Einstein field equation derived in the new theory, the source term includes the stress-energy tensor of electromagnetic fields as well as the stress-energy tensor of other unidentified matter. Under certain conditions the unidentified matter can be interpreted as a cosmological constant in the four-dimensional spacetime. We argue that, the electromagnetic field equation and hence the unified theory presented in this paper can be tested in an environment with a high mass density, e.g., inside a neutron star or a white dwarf, and in the early epoch of the universe.

Key wordsgeneral relativity    Maxwell’s equations    unified field theory    Kaluza–Klein theory    brane world theory
收稿日期: 2016-02-14      出版日期: 2016-06-12
Corresponding Author(s): Li-Xin Li   
 引用本文:   
. [J]. Frontiers of Physics, 2016, 11(6): 110402.
Li-Xin Li. A new unified theory of electromagnetic and gravitational interactions. Front. Phys. , 2016, 11(6): 110402.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-016-0588-z
https://academic.hep.com.cn/fop/CN/Y2016/V11/I6/110402
1 A. Einstein, Zur allgemeinen Relativitätstheorie, Seitsber. Preuss. Akad. Wiss. Berlin, 1915, p. 778
2 A. Einstein, Die Feldgleichungen der Gravitation, Seitsber. Preuss. Akad. Wiss. Berlin, 1915, p. 844
3 H. F. M. Goenner, On the history of unified field theories, Living Rev. Relativity 7, 2 (2004)
https://doi.org/10.12942/lrr-2004-2
4 A. Einstein, A generalized theory of gravitation, Rev. Mod. Phys. 20, 35 (1948)
https://doi.org/10.1103/RevModPhys.20.35
5 A. Einstein, The Meaning of Relativity, 5th Ed., Including the Relativistic Theory of the Non-Symmetric Field, Princeton University Press, Princeton, 1955
6 H. Weyl, Gravitation und Elektrizität, Seitsber. Preuss. Akad. Wiss. Berlin, 1918, p. 465
7 A. Eddington, A generalisation of Weyl’s theory of the electromagnetic and gravitational fields, Proc. R. Soc. Ser. A 99, 104 (1921)
8 E. Schrödinger, The final affine field laws I, Proc. Royal Irish Acad. A 51, 163 (1947)
9 G. Nordström, Über die Moglichkeit, das electromagnetische Feld und das Gravitationsfeld zu vereinigen, Phys. Z. 15, 504 (1914)
10 T. Kaluza, Zum Unitätsproblem der Physik, Sitzungsber. Preuss. Akad. Wiss, 1921, p. 966
11 O. Klein, Quantentheorie und fünfdimensionale Relativitätstheorie, Z. Phys. 37, 895 (1926)
https://doi.org/10.1007/BF01397481
12 O. Klein, The atomicity of electricity as a quantum theory law, Nature 118, 516 (1926)
https://doi.org/10.1038/118516a0
13 D. Bailin and A. Love, Kaluza–Klein theories, Rep. Prog. Phys. 50, 1087 (1987)
https://doi.org/10.1088/0034-4885/50/9/001
14 J. M. Overduin and P. S. Wesson, Kaluza–Klein gravity, Phys. Rep. 283, 303 (1997)
https://doi.org/10.1016/S0370-1573(96)00046-4
15 N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, The hierarchy problem and new dimensions at a millimeter, Phys. Lett. B 429, 263 (1998)
https://doi.org/10.1016/S0370-2693(98)00466-3
16 I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, New dimensions at a millimeter to a fermi and superstrings at a TeV, Phys. Lett. B 436, 257 (1998)
https://doi.org/10.1016/S0370-2693(98)00860-0
17 L. Randall and R. Sundrum, Large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83, 3370 (1999)
https://doi.org/10.1103/PhysRevLett.83.3370
18 L. Randall and R. Sundrum, An alternative to compactification, Phys. Rev. Lett. 83, 4690 (1999)
https://doi.org/10.1103/PhysRevLett.83.4690
19 R. M. Wald, General Relativity, University of Chicago Press, Chicago, 1984
https://doi.org/10.7208/chicago/9780226870373.001.0001
20 S. W. Hawking and G. F. R. Ellis, The Large Scale Structure of Space-Time, Cambridge University Press, Cambridge, 1973
https://doi.org/10.1017/CBO9780511524646
21 S. Carroll, Spacetime and Geometry: An Introduction to General Relativity, Addison-Wesley, New York, 2003
22 L.-X. Li, Electrodynamics on cosmological scales, Gen. Relativ. Gravit. 48, 28 (2016)
https://doi.org/10.1007/s10714-016-2028-3
23 S. Weinberg, Gravitation and Cosmology, John Wiley and Sons, New York, 1972
24 C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation, W. H. Freeman, New York, 1973
25 A. Einstein, Die Grundlage der allgemeinen Relativitätstheorie, Ann. Phys. 354, 769 (1916)
https://doi.org/10.1002/andp.19163540702
26 R. L. Arnowitt, S. Deser, and C. W. Misner, in: Gravitation: An Introduction to Current Research, Ed. L. Witten, John Wiley and Sons, Inc., New York, 1962
27 According to Campbell’s theorem, any analytic n- dimensional Riemannian space can be locally embedded in an (n+1)-dimensional Ricci-flat space [43, 44]. Hence, consideration of an n-dimensional spacetime embedded in an (n+1)-dimensional spacetime does not seem to put much constraint on the properties of the n-dimensional spacetime.
28 In this paper tensor space on a manifold M will generally be denoted by T(M), regardless of the type of tensor (scalar, vector, dual vector, or tensor of any type).
29 The Lagrangian in Eq. (65) does not contain any derivatives of N so we do not interpret N as a matter field.
30 Note that all ΨabΨab; Ψ2, ΦabΦab, Φ2, ΨabΦab, and ΨΦ are proportional to N﹣2.
31 E. C. G. Stueckelberg, Théorie de la radiation de photon de masse arbitrairement petite, Helv. Phys. Acta 30, 209 (1957)
32 M. E. Peskin and D. V. Schroeder, An Introduction to Quantum Field Theory, Westview Press, New York, 1995
33 C. Liang and B. Zhou, An Introduction to Differential Geometry and General Relativity, Vol. I, Science Press, Beijing, 2006
34 J. Binney and S. Tremaine, Galactic Dynamics, Princeton University Press, Princeton, 1987
35 G. Hinshaw, D. Larson, E. Komatsu, D. N. Spergel, C. L. Bennett, , Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Cosmological parameter results, Astrophys. J. Supp. 208, 19 (2013)
https://doi.org/10.1088/0067-0049/208/2/19
36 P. A. R. Ade, N. Aghanim, M. Arnaud, M. Ashdown, J. Aumont, . (Planck Collaboration), Planck 2015 results. XIII. Cosmological parameters, arXiv: 1502.01589, 2015
37 The idea of interpreting the extra geometric terms in a four-dimensional Einstein field equation derived from 5D gravity as representing induced matter in a fourdimensional spacetime has been extensively investigated by Wesson and his collaborators (see [14, 45] and references therein). They proposed that the extra geometric terms are the stress-energy tensors of the induced matter and regarded the fifth dimension as being associated with the rest mass of particles instead of a real space dimension. However, in their theory, they did not derive the field equations of matter and electromagnetic fields.
38 T. Shiromizu, K. Maeda, and M. Sasaki, The Einstein equations on the 3-brane world, Phys. Rev. D 62, 024012 (2000)
https://doi.org/10.1103/PhysRevD.62.024012
39 R. M. Wald, Black hole in a uniform magnetic field, Phys. Rev. D 10, 1680 (1974)
https://doi.org/10.1103/PhysRevD.10.1680
40 Strictly, when an electromagnetic field is present the spacetime cannot be exactly Ricci-flat, since the stressenergy tensor of the electromagnetic field will make Rab≠0. However, if the electromagnetic field is weak its effect on the spacetime curvature can be ignored and the spacetime can be approximately Ricci-flat if the mass density of other matter is sufficiently low.
41 M. S. Turner and L. M. Widrow, Inflation-produced, large-scale magnetic fields, Phys. Rev. D 37, 2743 (1988)
https://doi.org/10.1103/PhysRevD.37.2743
42 A. S. Goldhaber and M. M. Nieto, Photon and graviton mass limits, Rev. Mod. Phys. 82, 939 (2010)
https://doi.org/10.1103/RevModPhys.82.939
43 J. E. Campbell, A Course of Differential Geometry, Clarendon Press, Oxford, 1926
44 C. Romero, R. Tavakol, and R. Zalaletdinov, The embedding of general relativity in five dimensions, Gen. Relativ. Gravit. 28, 365, 1996
https://doi.org/10.1007/BF02106973
45 P. S. Wesson, The status of modern five-dimensional gravity (A short review: Why physics needs the fifth dimension), Int. J. Mod. Phys. D 24, 1530001 (2015)
https://doi.org/10.1142/S0218271815300013
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed