Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2016, Vol. 11 Issue (6): 114206   https://doi.org/10.1007/s11467-016-0589-y
  本期目录
Perfect digital holographic imaging with high resolution using a submillimeter-dimension CCD sensor
Hua-Ying Wang (王华英)1,Nan-Yan Xiong (熊南燕)2,Jun-Xiang Li (栗军香)3,Zhao Dong (董昭)1,Xia-Nan Jiang (江夏男)1,Feng Fan (范锋)1,Ya-Guang Geng (耿亚光)4,Qiao-Fen Zhu (朱巧芬)1,*()
1. College of Science, Hebei University of Engineering, Handan 056038, China
2. College of Medicine, Hebei University of Engineering, Handan 056038, China
3. College of Clinical Medicine, Hebei University of Engineering, Handan 056038, China
4. Hebei Hanguang Industry Company Limited, Handan 056028, China
 全文: PDF(18476 KB)  
Abstract

In order to improve the resolution of digital holography with a common-dimension charge-coupled device (CCD) sensor, the point spread functions are briefly derived for the commonly used and practical post-magnification, pre-magnification, and image-plane digital holographic microscopic systems. The ultimate resolutions of these systems are analyzed and compared. The results show that the ultimate lateral resolution of pre-magnification digital holography is superior to that of post-magnification digital holography in the same conditions. We also demonstrate that the ultimate lateral resolution of image-plane digital holography has no correlation with the photosensitive dimension of the CCD sensor, and it is not significantly related to the pixel size of the sensor. Moreover, both the ultimate resolution and the imaging quality of image-plane digital holography are superior to that of pre- and post-magnification digital holographic microscopy. High-resolution imaging, whose resolution is close to the ultimate resolution of the microscope objective, can be achieved by image-plane digital holography even with a submillimeter-dimension sensor. This system, by which perfect imaging can be achieved, is optimal for commonly used digital holographic microscopy. Experimental results demonstrate the correctness of the theoretical analysis.

Key wordsdigital holography    digital holographic microscopy    image-plane digital holography    ultimate lateral resolution    small-dimension CCD
收稿日期: 2015-08-06      出版日期: 2016-06-28
Corresponding Author(s): Qiao-Fen Zhu (朱巧芬)   
 引用本文:   
. [J]. Frontiers of Physics, 2016, 11(6): 114206.
Hua-Ying Wang (王华英),Nan-Yan Xiong (熊南燕),Jun-Xiang Li (栗军香),Zhao Dong (董昭),Xia-Nan Jiang (江夏男),Feng Fan (范锋),Ya-Guang Geng (耿亚光),Qiao-Fen Zhu (朱巧芬). Perfect digital holographic imaging with high resolution using a submillimeter-dimension CCD sensor. Front. Phys. , 2016, 11(6): 114206.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-016-0589-y
https://academic.hep.com.cn/fop/CN/Y2016/V11/I6/114206
1 P. Picart and J. C. Li, Digital Holography, Wiley, Weinheim, 2013
2 D. Merrill, R. An, J. Turek, and D. D. Nolte, Digital holography of intracellular dynamics to probe tissue physiology, Appl. Opt. 54(1), A89 (2015)
https://doi.org/10.1364/AO.54.000A89
3 Baxter, Digital holography: Counting cells, Nat. Photonics 5(9), 513 (2011)
https://doi.org/10.1038/nphoton.2011.233
4 M. Rinehart, H. Park, and A. Wax, Influence of defocus on quantitative analysis of microscopic objects and individual cells with digital holography, Biomed.Opt. Express 6(6), 2067 (2015)
https://doi.org/10.1364/BOE.6.002067
5 L. Rong, T. Latychevskaia, C. Chen, D. Wang, Z. Yu, X. Zhou, Z. Li, H. Huang, Y. Wang, and Z. Zhou, Terahertz in-line digital holography of human hepatocellular carcinoma tissue, Sci. Rep. 5, 8445 (2015)
https://doi.org/10.1038/srep08445
6 Y. Z. Zhang, D. Y. Wang, Y. X. Wang, and S. Q. Tao, Automatic compensation of total phase aberrations in digital holographic biological imaging, Chin. Phys. Lett. 28(11), 114209 (2011)
https://doi.org/10.1088/0256-307X/28/11/114209
7 G. Di Caprio, A. El Mallahi, P. Ferraro, R. Dale, G. Coppola, B. Dale, G. Coppola, and F. Dubois, 4D tracking of clinical seminal samples for quantitative characterization of motility parameters, Biomed. Opt. Express 5(3), 690 (2014)
https://doi.org/10.1364/BOE.5.000690
8 M. de Angelis, <?Pub Caret?>S. De Nicola, A. Finizio, G. Pierattini, P. Ferraro, S. Pelli, G. Righini, and S. Sebastiani, Digitalholography refractive-index-profile measurement of phase gratings, Appl. Phys. Lett. 88(11), 111114 (2006)
https://doi.org/10.1063/1.2186515
9 M. R. McCartney, D. J. Smith, R. Hull, J. C. Bean, E. Voelkl, and B. Frost, Direct observation of potential distribution across Si/Si p-n junctions using off-axis electron holography, Appl. Phys. Lett. 65(20), 2603 (1994)
https://doi.org/10.1063/1.112581
10 C. Qin, J. Zhao, J. Di, L. Wang, Y. Yu, and W. Yuan, Visually testing the dynamic character of a blazed-angle adjustable grating by digital holographic microscopy, Appl. Opt. 48(5), 919 (2009)
https://doi.org/10.1364/AO.48.000919
11 T. Yanagawa, R. Abe, and Y. Hayasaki, Threedimensional mapping of fluorescent nanoparticles using incoherent digital holography, Opt. Lett. 40(14), 3312 (2015)
https://doi.org/10.1364/OL.40.003312
12 S. Hosokawa, T. Ozaki, K. Hayashi, N. Happo, M. Fujiwara, K. Horii, P. Fons, A. V. Kolobov, and J. Tominaga, Existence of tetrahedral site symmetry about Ge atoms in a single-crystal film of Ge2Sb2Te5 found by X-ray fluorescence holography, Appl. Phys. Lett. 90(13), 131913 (2007)
https://doi.org/10.1063/1.2717094
13 D. Pejchang, S. Coëtmellec, G. Gréhan, M. Brunel, D. Lebrun, A. Chaari, T. Grosges, and D. Barchiesi, Recovering the size of nanoparticles by digital in-line holography, Opt. Express 23(14), 18351 (2015)
https://doi.org/10.1364/OE.23.018351
14 K. Goto and Y. Hayasaki, Three-dimensional motion detection of a 20-nm gold nanoparticle using twilight-field digital holography with coherence regulation, Opt. Lett. 40(14), 3344 (2015)
https://doi.org/10.1364/OL.40.003344
15 J. Gao, D. R. Guildenbecher, L. Engvall, P. L. Reu, and J. Chen, Refinement of particle detection by the hybrid method in digital in-line holography, Appl. Opt. 53(27), G130 (2014)
https://doi.org/10.1364/AO.53.00G130
16 N. Verrier, C. Fournier, and T. Fournel, 3D tracking the Brownian motion of colloidal particles using digital holographic microscopy and joint reconstruction, Appl. Opt. 54(16), 4996 (2015)
https://doi.org/10.1364/AO.54.004996
17 N. Verrier and C. Fournier, Digital holography superresolution for accurate three-dimensional reconstruction of particle holograms, Opt. Lett. 40(2), 217 (2015)
https://doi.org/10.1364/OL.40.000217
18 A. L. Gaunt and Z. Hadzibabic, Robust digital holography for ultra-cold atom trapping, Sci. Rep. 2, 721 (2011)
19 S. L. Pu, Q. H. Wang, K. F. Cen, L. Denis, and K. F. Ren, Application of digital holography to circle flow bed boiler measurement, Front. Energy 1(2), 218 (2007)
https://doi.org/10.1007/s11708-007-0029-3
20 P. Gao, G. Pedrini, and W. Osten, Phase retrieval with resolution enhancement by using structured illumination, Opt. Lett. 38(24), 5204 (2013)
https://doi.org/10.1364/OL.38.005204
21 P. Gao, G. Pedrini, C. Zuo, and W. Osten, Phase retrieval using spatially modulated illumination, Opt. Lett. 39(12), 3615 (2014)
https://doi.org/10.1364/OL.39.003615
22 D. Lee and A. Weiner, Optical phase imaging using a synthetic aperture phase retrieval technique, Opt. Express 22(8), 9380 (2014)
https://doi.org/10.1364/OE.22.009380
23 S. T. Thurman and A. Bratcher, Multiplexed syntheticaperture digital holography, Appl. Opt. 54(3), 559 (2015)
https://doi.org/10.1364/AO.54.000559
24 C. J. Yuan, G. H. Situ, G. Pedrini, J. Ma, and W. Osten, Resolution improvement in digital holography by angular and polarization multiplexing, Appl. Opt. 50(7), B6 (2011)
https://doi.org/10.1364/AO.50.0000B6
25 M. Paturzo, F. Merola, S. Grilli, S. De Nicola, A. Finizio, and P. Ferraro, Super-resolution in digital holography by a two-dimensional dynamic phase grating, Opt. Express 16(21), 17107 (2008)
https://doi.org/10.1364/OE.16.017107
26 H. Wahba and T. Kreis, Characterization of graded index optical fibers by digital holographic interferometry, Appl. Opt. 48(8), 1573 (2009)
https://doi.org/10.1364/AO.48.001573
27 Y. C. Zhao, X. Y. Zhang, C. J. Yuan, S. P. Nie, Z. Q. Zhu, L. Wang, Y. Li, L. P. Gong, and S. T. Feng, Darkfield digital holographic microscopy by using vortex beam illumination, Acta Physica Sinica 63(22), 224202 (2014)
28 E. Sánchez-Ortiga, A. Doblas, G. Saavedra, M. Martínez-Corral, and J. Garcia Sucerquia, Off-axis digital holographic microscopy: practical design parameters for operating at diffraction limit, Appl. Opt. 53(10), 2058 (2014)
https://doi.org/10.1364/AO.53.002058
29 H. Y. Wang, M. J. Yu, Y. N. Jiang, Q. F. Zhu, and F. F. Liu, Point spread function and lateral resolution analysis of digital holographic microscopy system, Opt. Commun. 322, 90 (2014)
https://doi.org/10.1016/j.optcom.2014.02.005
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed