Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2016, Vol. 11 Issue (6): 114208   https://doi.org/10.1007/s11467-016-0594-1
  本期目录
Propagation of polarized photons through a cavity with an anisotropic metamaterial
Yun-Xia Dong(),Jing-Jiang You
School of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, China
 全文: PDF(440 KB)  
Abstract

We present a theoretical study of the propagation properties of polarized photons passing through the cavity with an anisotropic metamaterial. We find that the resonant peaks of transmission appear for photons polarized in a certain direction corresponding to a negative element of the permittivity tensor. This indicates the potential for applying such cavity structures as filters for photons with certain polarizations. The resonant peak of transmission for photons having a given frequency can be achieved by adjusting the thicknesses of the air and metamaterial. If the frequency of the incident photons and the thickness of the metamaterial are fixed, the cavity structure can be used as a photon switch controlled by the thickness of the air. The effect of the absorption is considered, and the result shows that the transmission peak always appears, even for metamaterials with large absorption. Finally, the polarization manipulation of such structures is explored.

Key wordsanisotropic metamaterial    polarized photon    cavity structure
收稿日期: 2016-01-27      出版日期: 2016-06-06
Corresponding Author(s): Yun-Xia Dong   
 引用本文:   
. [J]. Frontiers of Physics, 2016, 11(6): 114208.
Yun-Xia Dong,Jing-Jiang You. Propagation of polarized photons through a cavity with an anisotropic metamaterial. Front. Phys. , 2016, 11(6): 114208.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-016-0594-1
https://academic.hep.com.cn/fop/CN/Y2016/V11/I6/114208
1 D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, Composite medium with simultaneously negative permeability and permittivity, Phys. Rev. Lett. 84(18), 4184 (2000)
https://doi.org/10.1103/PhysRevLett.84.4184
2 J. B. Pendry, Negative refraction makes a perfect lens, Phys. Rev. Lett. 85(18), 3966 (2000)
https://doi.org/10.1103/PhysRevLett.85.3966
3 L. F. Shen, S. L. He, and S. S. Xiao, Stability and quality factor of a one-dimensional subwavelength cavity resonator containing a left-handed material, Phys. Rev. B 69(11), 115111 (2004)
https://doi.org/10.1103/PhysRevB.69.115111
4 J. Li, L. Zhou, C. T. Chan, and P. Sheng, Photonic band gap from a stack of positive and negative index materials, Phys. Rev. Lett. 90(8), 083901 (2003)
https://doi.org/10.1103/PhysRevLett.90.083901
5 D. R. Smith and D. Schurig, Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors, Phys. Rev. Lett. 90(7), 077405 (2003)
https://doi.org/10.1103/PhysRevLett.90.077405
6 L. Zhou, C. T. Chan, and P. Sheng, Anisotropy and oblique total transmission at a planar negative-index interface, Phys. Rev. B 68(11), 115424 (2003)
https://doi.org/10.1103/PhysRevB.68.115424
7 S. Sun, X. Huang, and L. Zhou, Two-dimensional complete photonic gaps from layered periodic structures containing anisotropic left-handed metamaterials, Phys. Rev. E 75(6), 066602 (2007)
https://doi.org/10.1103/PhysRevE.75.066602
8 L. Hu and S. T. Chui, Characteristics of electromagnetic wave propagation in uniaxially anisotropic left-handed materials, Phys. Rev. B 66(8), 085108 (2002)
https://doi.org/10.1103/PhysRevB.66.085108
9 J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, Manipulating electromagnetic wave polarizations by anisotropic metamaterials, Phys. Rev. Lett. 99(6), 063908 (2007)
https://doi.org/10.1103/PhysRevLett.99.063908
10 J. Hao and L. Zhou, Electromagnetic wave scatterings by anisotropic metamaterials: Generalized 4×4 transfermatrix method, Phys. Rev. B 77(9), 094201 (2008)
https://doi.org/10.1103/PhysRevB.77.094201
11 J. Hao, M. Qiu, and L. Zhou, Manipulate light polarizations with metamaterials: From microwave to visible, Front. Phys. 5(3), 291 (2010)
12 H. F. Ma, W. X. Tang, Q. Cheng, and T. J. Cui, A single metamaterial plate as bandpass filter, transparent wall, and polarization converter controlled by polarizations, Appl. Phys. Lett. 105(8), 081908 (2014)
https://doi.org/10.1063/1.4894370
13 Y. Dong and X. Cui, Quantum optical correlation through metamaterials, Front. Phys. 7(5), 513 (2012)
https://doi.org/10.1007/s11467-012-0258-8
14 Y. Dong and X. Zhang, Quantum-optical input–output relations and entanglement distillation by anisotropic planar multilayers, J. Opt. 13(3), 035401 (2011)
https://doi.org/10.1088/2040-8978/13/3/035401
15 Y. Dong and C. Liu, Electromagnetic field quantization and input-output relation for anisotropic magnetodielectric metamaterial, Chin. Phys. B 24(6), 064206 (2015)
https://doi.org/10.1088/1674-1056/24/6/064206
16 Y. Dong and X. Zhang, Unusual entanglement transformation properties of the quantum radiation through one-dimensional random system containing left-handedmaterials, Opt. Express 16(21), 16950 (2008)
https://doi.org/10.1364/OE.16.016950
17 D. Zhao, H. Gong, Y. Yang, Q. Li, and M. Qiu, Realization of an extraordinary transmission window for a seamless Ag film based on metal-insulator-metal structures, Appl. Phys. Lett. 102(20), 201109 (2013)
https://doi.org/10.1063/1.4807734
18 W. Wang, D. Zhao, Y. Chen, H. Gong, X. Chen, S. Dai, Y. Yang, Q. Li, and M. Qiu, Grating-assisted enhanced optical transmission through a seamless gold film, Opt. Express 22(5), 5416 (2014)
https://doi.org/10.1364/OE.22.005416
19 Q. Li, T. Wang, Y. Su, M. Yan, and M. Qiu, Coupled mode theory analysis of mode-splitting in coupled cavity system, Opt. Express 18(8), 8367 (2010)
https://doi.org/10.1364/OE.18.008367
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed