Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2017, Vol. 12 Issue (4): 120302   https://doi.org/10.1007/s11467-016-0617-y
  本期目录
Routing protocol for wireless quantum multi-hop mesh backbone network based on partially entangled GHZ state
Pei-Ying Xiong1,Xu-Tao Yu1(),Zai-Chen Zhang2,Hai-Tao Zhan1,Jing-Yu Hua3
1. State Key Lab of Millimeter Waves, Southeast University, Nanjing 210096, China
2. National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China
3. College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
 全文: PDF(2413 KB)  
Abstract

Quantum multi-hop teleportation is important in the field of quantum communication. In this study, we propose a quantum multi-hop communication model and a quantum routing protocol with multihop teleportation for wireless mesh backbone networks. Based on an analysis of quantum multi-hop protocols, a partially entangled Greenberger–Horne–Zeilinger (GHZ) state is selected as the quantum channel for the proposed protocol. Both quantum and classical wireless channels exist between two neighboring nodes along the route. With the proposed routing protocol, quantum information can be transmitted hop by hop from the source node to the destination node. Based on multi-hop teleportation based on the partially entangled GHZ state, a quantum route established with the minimum number of hops. The difference between our routing protocol and the classical one is that in the former, the processes used to find a quantum route and establish quantum channel entanglement occur simultaneously. The Bell state measurement results of each hop are piggybacked to quantum route finding information. This method reduces the total number of packets and the magnitude of air interface delay. The deduction of the establishment of a quantum channel between source and destination is also presented here. The final success probability of quantum multi-hop teleportation in wireless mesh backbone networks was simulated and analyzed. Our research shows that quantum multi-hop teleportation in wireless mesh backbone networks through a partially entangled GHZ state is feasible.

Key wordswireless mesh backbone network    multi-hop teleportation    partially entangled GHZ state    quantum routing protocol
收稿日期: 2016-05-25      出版日期: 2016-10-17
Corresponding Author(s): Xu-Tao Yu   
 引用本文:   
. [J]. Frontiers of Physics, 2017, 12(4): 120302.
Pei-Ying Xiong,Xu-Tao Yu,Zai-Chen Zhang,Hai-Tao Zhan,Jing-Yu Hua. Routing protocol for wireless quantum multi-hop mesh backbone network based on partially entangled GHZ state. Front. Phys. , 2017, 12(4): 120302.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-016-0617-y
https://academic.hep.com.cn/fop/CN/Y2017/V12/I4/120302
1 C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, Teleporting an unknown quantum state via dual classical and Einstein-Podolsky- Rosen channels, Phys. Rev. Lett. 70(13), 1895 (1993)
https://doi.org/10.1103/PhysRevLett.70.1895
2 D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, Experimental quantum teleportation, Nature 390(6660), 575 (1997)
https://doi.org/10.1038/37539
3 D. Bouwmeester, K. Mattle, J. W. Pan, H. Weinfurter, A. Zeilinger, and M. Żukowski, Experimental quantum teleportation of arbitrary quantum states, Appl. Phys. B 67(6), 749 (1998)
https://doi.org/10.1007/s003400050575
4 M. Żukowski, A. Zeilinger, M. A. Horne, and A. K. Ekert, “Event-ready-detectors” Bell experiment via entanglement swapping, Phys. Rev. Lett. 71(26), 4287 (1993)
https://doi.org/10.1103/PhysRevLett.71.4287
5 J. W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, Experimental entanglement swapping: Entangling photons that never interacted, Phys. Rev. Lett. 80(18), 3891 (1998)
https://doi.org/10.1103/PhysRevLett.80.3891
6 Y. B. Sheng, L. Zhou, and S. M. Zhao, Efficient twostep entanglement concentration for arbitrary W states, Phys. Rev. A 85(4), 042302 (2012)
https://doi.org/10.1103/PhysRevA.85.042302
7 G. Gour, Faithful teleportation with partially entangled states, Phys. Rev. A 70(4), 042301 (2004)
https://doi.org/10.1103/PhysRevA.70.042301
8 H. Y. Dai, P. X. Chen, and C. Z. Li, Probabilistic teleportation of an arbitrary two-particle state by a partially entangled three-particle GHZ state and W state, Opt. Commun. 231(1–6), 281 (2004)
https://doi.org/10.1016/j.optcom.2003.11.074
9 Y. H. Wang and H. S. Song, Preparation of partially entangled W state and deterministic multi-controlled teleportation, Opt. Commun. 281(3), 489 (2008)
https://doi.org/10.1016/j.optcom.2007.09.057
10 Z. Kurucz, M. Koniorczyk, and J. Janszky, Teleportation with partially entangled states, Fortschr. Phys. 49(10–11), 1019 (2001)
https://doi.org/10.1002/1521-3978(200110)49:10/11<1019::AID-PROP1019>3.0.CO;2-Z
11 D. P. Tian, Y. J. Tao, and M. Qin, Teleportation of an arbitrary two-qudit state based on the non-maximally four-qudit cluster state, Sci. China Ser. G-Phys. Mech. Astron. 51(10), 1523 (2008)
https://doi.org/10.1007/s11433-008-0149-8
12 N. B. An, Probabilistic teleportation of an M-quNit state by a single non-maximally entangled quNit-pair, Phys. Lett. A 372(21), 3778 (2008)
https://doi.org/10.1016/j.physleta.2008.02.066
13 G. Rigolin, Unity fidelity multiple teleportation using partially entangled states, J. Phys. At. Mol. Opt. Phys. 42(23), 235504 (2009)
https://doi.org/10.1088/0953-4075/42/23/235504
14 M. Jiang, H. Li, Z. K. Zhang, and J. Zeng, Faithful teleportation of multi-particle states involving multi spatially re-mote agents via probabilistic channels, Physica A 390(4), 760 (2011)
https://doi.org/10.1016/j.physa.2010.10.020
15 M. Jiang, H. Li, Z. K. Zhang, and J. Zeng, Faithful teleportation via multi-particle quantum states in a network with many agents, Quantum Inform. Process. 11(1), 23 (2012)
https://doi.org/10.1007/s11128-011-0228-z
16 L. H. Shi, X. T. Yu, X. F. Cai, Y. X. Gong, and Z. C. Zhang, Quantum information transmission in the quantum wireless multihop network based on Werner state, Chin. Phys. B 24(5), 050308 (2015)
https://doi.org/10.1088/1674-1056/24/5/050308
17 X. F. Cai, X. T. Yu, L. H. Shi, and Z. C. Zhang, Partially entangled states bridge in quantum teleportation, Front. Phys. 9(5), 646 (2014)
https://doi.org/10.1007/s11467-014-0432-2
18 X. T. Yu, J. Xu, and Z. C. Zhang, Distributed wireless quantum communication networks, Chin. Phys. B 22(9), 090311 (2013)
https://doi.org/10.1088/1674-1056/22/9/090311
19 K. Wang, X. T. Yu, S. L. Lu, and Y. X. Gong, Quantum wireless multi-hop communication based on arbitrary Bell pairs and teleportation, Phys. Rev. A 89(2), 022329 (2014)
https://doi.org/10.1103/PhysRevA.89.022329
20 P. Y. Xiong, X. T. Yu, H. T. Zhan, and Z. C. Zhang, Multiple teleportation via partially entangled GHZ state, Front. Phys. 11(4), 110303 (2016)
https://doi.org/10.1007/s11467-016-0553-x
21 K. Wang, Y. X. Gong, X. T. Yu, and S. L. Lu, Addendum to “Quantum wireless multihop communication based on arbitrary Bell pairs and teleportation”, Phys. Rev. A 90(4), 044302 (2014)
https://doi.org/10.1103/PhysRevA.90.044302
22 S. T. Cheng, C. Y. Wang, and M. H. Tao, Quantum communication for wireless wide-area networks, IEEE J. Sel. Areas Comm. 23(7), 1424 (2005)
https://doi.org/10.1109/JSAC.2005.851157
23 X. T. Yu, J. Xu, and Z. C. Zhang, Routing protocol for wireless ad hoc quantum communication network based on quantum teleportation, Acta Phisica Sinica 61(22), 220303 (2012)
24 X. T. Yu, Z. C. Zhang, and J. Xu, Distributed wireless quantum communication networks with partially entangled pairs, Chin. Phys. B 23(1), 010303 (2014)
https://doi.org/10.1088/1674-1056/23/1/010303
25 I. F. Akyildiz, X. Wang, and W. Wang, Wireless mesh networks: A survey, Comput. Netw. ISDN Syst. 47(4), 445 (2005)
https://doi.org/10.1016/j.comnet.2004.12.001
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed