Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2017, Vol. 12 Issue (4): 127302   https://doi.org/10.1007/s11467-016-0620-3
  本期目录
Transport through a quantum dot coupled to two Majorana bound states
Qi-Bo Zeng1,Shu Chen2,3,L. You1,3,Rong Lü1,3()
1. Department of Physics and State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, Beijing 100084, China
2. Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
3. Collaborative Innovation Center of Quantum Matter, Beijing 100084, China
 全文: PDF(2826 KB)  
Abstract

We investigate electron transport inside a ring system composed of a quantum dot (QD) coupled to two Majorana bound states confined at the ends of a one-dimensional topological superconductor nanowire. By tuning the magnetic flux threading through the ring, the model system we consider can be switched into states with or without zero-energy modes when the nanowire is in its topological phase. We find that the Fano profile in the conductance spectrum due to the interference between bound and continuum states exhibits markedly different features for these two different situations, which consequently can be used to detect the Majorana zero-energy mode. Most interestingly, as a periodic function of magnetic flux, the conductance shows 2π periodicity when the two Majorana bound states are nonoverlapping (as in an infinitely long nanowire) but displays 4π periodicity when the overlapping becomes nonzero (as in a finite length nanowire). We map the model system into a QD–Kitaev ring in the Majorana fermion representation and affirm these different characteristics by checking the energy spectrum.

Key wordsquantum dot    Majorana bound states    Fano profile    QD–Kitaev ring    topologically trivial and nontrivial
收稿日期: 2016-05-17      出版日期: 2016-10-17
Corresponding Author(s): Rong Lü   
 引用本文:   
. [J]. Frontiers of Physics, 2017, 12(4): 127302.
Qi-Bo Zeng,Shu Chen,L. You,Rong Lü. Transport through a quantum dot coupled to two Majorana bound states. Front. Phys. , 2017, 12(4): 127302.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-016-0620-3
https://academic.hep.com.cn/fop/CN/Y2017/V12/I4/127302
1 S. R. Elliott and M. Franz, Majorana fermions in nuclear, particle, and solid-state physics, Rev. Mod. Phys. 87(1), 137 (2015)
https://doi.org/10.1103/RevModPhys.87.137
2 T. D. Stanescu and S. Tewari, Majorana fermions in semiconductor nanowires: fundamentals, modeling, and experiment., J. Phys.: Condens. Matter 25(23), 233201 (2013)
https://doi.org/10.1088/0953-8984/25/23/233201
3 J. Alicea, New directions in the pursuit of Majorana fermions in solid state systems, Rep. Prog. Phys. 75(7), 076501 (2012)
https://doi.org/10.1088/0034-4885/75/7/076501
4 M. Stone and R. Roy, Edge modes, edge currents, and gauge invariance in px+ ipysuperfluids and superconductors, Phys. Rev. B 69(18), 184511 (2004)
https://doi.org/10.1103/PhysRevB.69.184511
5 P. Fendley, M. P. A. Fisher, and C. Nayak, Edge states and tunneling of non-Abelian quasiparticles in the n= 5/2 quantum Hall state and p+ ipsuperconductors, Phys. Rev. B 75(4), 045317 (2007)
https://doi.org/10.1103/PhysRevB.75.045317
6 S. Raghu, A. Kapitulnik, and S. A. Kivelson, Hidden quasi-one-dimensional superconductivity in Sr2RuO4, Phys. Rev. Lett. 105(13), 136401 (2010)
https://doi.org/10.1103/PhysRevLett.105.136401
7 S. B. Chung, H. J. Zhang, X. L. Qi, and S. C. Zhang, Topological superconducting phase and Majorana fermions in half-metal/superconductor heterostructures, Phys. Rev. B 84, 060510(R) (2011)
8 R. M. Lutchyn, J. D. Sau, and S. Das Sarma, Majorana fermions and a topological phase transition in semiconductor–superconductor heterostructures, Phys. Rev. Lett. 105(7), 077001 (2010)
https://doi.org/10.1103/PhysRevLett.105.077001
9 Y. Oreg, G. Refael, and F. von Oppen, Helical liquids and Majorana bound states in quantum wires, Phys. Rev. Lett. 105(17), 177002 (2010)
https://doi.org/10.1103/PhysRevLett.105.177002
10 X. J. Liu, L. Jiang, H. Pu, and H. Hu, Probing Majorana fermions in spin–orbit-coupled atomic Fermi gases, Phys. Rev. A 85, 021603(R) (2012)
11 C. Qu, Z. Zheng, M. Gong, Y. Xu, L. Mao, X. Zou, G. Guo, and C. Zhang, Topological superfluids with finitemomentum pairing and Majorana fermions, Nat. Commun. 4, 2710 (2013)
https://doi.org/10.1038/ncomms3710
12 C. Chen, Inhomogeneous topological superfluidity in one-dimensional spin–orbit-coupled Fermi gases, Phys. Rev. Lett. 111(23), 235302 (2013)
https://doi.org/10.1103/PhysRevLett.111.235302
13 J. Ruhman, E. Berg, and E. Altman, Topological states in a one-dimensional Fermi gas with attractive interaction, Phys. Rev. Lett. 114(10), 100401 (2015)
https://doi.org/10.1103/PhysRevLett.114.100401
14 N. B. Kopnin and M. M. Salomaa, Mutual friction in superfluid He3: Effects of bound states in the vortex core, Phys. Rev. B 44(17), 9667 (1991)
https://doi.org/10.1103/PhysRevB.44.9667
15 X. L. Qi, T. L. Hughes, S. Raghu, and S. C. Zhang, Time-reversal-invariant topological superconductors and superfluids in two and three dimensions, Phys. Rev. Lett. 102(18), 187001 (2009)
https://doi.org/10.1103/PhysRevLett.102.187001
16 S. B. Chung and S. C. Zhang, Detecting the Majorana fermion surface state of He3tB through spin relaxation, Phys. Rev. Lett. 103(23), 235301 (2009)
https://doi.org/10.1103/PhysRevLett.103.235301
17 S. Nadj-Perge, I. K. Drozdov, B. A. Bernevig, and A. Yazdani, Proposal for realizing Majorana fermions in chains of magnetic atoms on a superconductor, Phys. Rev. B 88, 020407(R) (2013)
18 S. Nadj-Perge, I. K. Drozdov, J. Li, H. Chen, S. Jeon, J. Seo, A. H. MacDonald, B. A. Bernevig, and A. Yazdani, Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor, Science 346(6209), 602 (2014)
https://doi.org/10.1126/science.1259327
19 H. Y. Hui, P. M. R. Brydon, J. D. Sau, S. Tewari, and S. Das Sarma, Majorana fermions in ferromagnetic chains on the surface of bulk spin–orbit coupled s-wave superconductors, Sci. Rep. 5, 8880 (2015)
https://doi.org/10.1038/srep08880
20 E. Dumitrescu, B. Roberts, S. Tewari, J. D. Sau, and S. Das Sarma, Majorana fermions in chiral topological ferromagnetic nanowires, Phys. Rev. B 91(9), 094505 (2015)
https://doi.org/10.1103/PhysRevB.91.094505
21 T. D. Stanescu, R. M. Lutchyn, and S. Das Sarma, Majorana fermions in semiconductor nanowires, Phys. Rev. B 84(14), 144522 (2011)
https://doi.org/10.1103/PhysRevB.84.144522
22 V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A. M. Bakkers, and L. P. Kouwenhoven, Signatures of Majorana fermions in hybrid superconductorsemiconductor nanowire devices, Science 336(6084), 1003 (2012)
https://doi.org/10.1126/science.1222360
23 M. T. Deng, C. L. Yu, G. Y. Huang, M. Larsson, P. Caroff, and H. Q. Xu, Anomalous zero-bias conductance peak in a Nb–InSb nanowire–Nb hybrid device, Nano Lett. 12(12), 6414 (2012)
https://doi.org/10.1021/nl303758w
24 A. Das, Y. Ronen, Y. Most, Y. Oreg, M. Heiblum, and H. Shtrikman, Zero-bias peaks and splitting in an Al– InAs nanowire topological superconductor as a signature of Majorana fermions, Nat. Phys. 8(12), 887 (2012)
https://doi.org/10.1038/nphys2479
25 A. D. K. Finck, D. J. Van Harlingen, P. K. Mohseni, K. Jung, and X. Li, Anomalous modulation of a zero-bias peak in a hybrid nanowire-superconductor device, Phys. Rev. Lett. 110(12), 126406 (2013)
https://doi.org/10.1103/PhysRevLett.110.126406
26 D. M. Badiane, M. Houzet, and J. S. Meyer, Nonequilibrium Josephson Effect through Helical Edge States, Phys. Rev. Lett. 107(17), 177002 (2011)
https://doi.org/10.1103/PhysRevLett.107.177002
27 P. A. Ioselevich and M. V. Feigel’man, Anomalous Josephson current via Majorana bound states in topological insulators, Phys. Rev. Lett. 106(7), 077003 (2011)
https://doi.org/10.1103/PhysRevLett.106.077003
28 A. M. Black-Schaffer and J. Linder, Majorana fermions in spin–orbit-coupled ferromagnetic Josephson junctions, Phys. Rev. B 84, 180509 (2011)
https://doi.org/10.1103/PhysRevB.84.180509
29 B. H. Wu and J. C. Cao, Tunneling transport through superconducting wires with Majorana bound states, Phys. Rev. B 85(8), 085415 (2012)
https://doi.org/10.1103/PhysRevB.85.085415
30 A. Zazunov, A. L. Yeyati, and R. Egger, Coulomb blockade of Majorana-fermion-induced transport, Phys. Rev. B 84(16), 165440 (2011)
https://doi.org/10.1103/PhysRevB.84.165440
31 A. Ueda and T. Yokoyama, Anomalous interference in Aharonov–Bohm rings with two Majorana bound states, Phys. Rev. B 90, 081405(R) (2014)
32 Y. Cao, P. Wang, G. Xiong, M. Gong, and X. Q. Li, Probing the existence and dynamics of Majorana fermion via transport through a quantum dot, Phys. Rev. B 86(11), 115311 (2012)
https://doi.org/10.1103/PhysRevB.86.115311
33 W. J. Gong, Sh. F. Zhang, Zh. Ch. Li, G. Yi, and Y. S. Zheng, Detection of a Majorana fermion zero mode by a T-shaped quantum-dot structure, Phys. Rev. B 89(24), 245413 (2014)
https://doi.org/10.1103/PhysRevB.89.245413
34 H. F. Lü, H. Z. Lu, and S. Q. Shen, Nonlocal noise cross correlation mediated by entangled Majorana fermions, Phys. Rev. B 86(7), 075318 (2012)
https://doi.org/10.1103/PhysRevB.86.075318
35 H. F. Lü, H. Z. Lu, and S. Q. Shen, Current noise cross correlation mediated by Majorana bound states, Phys. Rev. B 90(19), 195404 (2014)
https://doi.org/10.1103/PhysRevB.90.195404
36 H. F. Lü, H. Z. Lu, and S. Q. Shen, Enhanced current noise correlations in a Coulomb–Majorana device, Phys. Rev. B 93, 245418 (2016)
https://doi.org/10.1103/PhysRevB.93.245418
37 K. Flensberg, Non-Abelian operations on Majorana fermions via single-charge control, Phys. Rev. Lett. 106(9), 090503 (2011)
https://doi.org/10.1103/PhysRevLett.106.090503
38 J. D. Sau, B. Swingle, and S. Tewari, Proposal to probe quantum nonlocality of Majorana fermions in tunneling experiments, Phys. Rev. B 92, 020511(R) (2015)
39 D. E. Liu and H. U. Baranger, Detecting a Majoranafermion zero mode using a quantum dot, Phys. Rev. B 84, 201308(R) (2011)
40 A. Y. Kitaev, Unpaired Majorana fermions in quantum wires, Physics-Uspekhi 44(10S), 131 (2001)
https://doi.org/10.1070/1063-7869/44/10S/S29
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed