Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2017, Vol. 12 Issue (5): 127101   https://doi.org/10.1007/s11467-016-0625-y
  本期目录
Superfluid response in heavy fermion superconductors
Yin Zhong1(),Lan Zhang1,Can Shao,Hong-Gang Luo1,2()
1. Center for Interdisciplinary Studies & Key Laboratory for Magnetism and Magnetic Materials of the MoE, Lanzhou University, Lanzhou 730000, China
2. Beijing Computational Science Research Center, Beijing 100084, China
 全文: PDF(1582 KB)  
Abstract

Motivated by a recent London penetration depth measurement [H. Kim, et al., Phys. Rev. Lett. 114, 027003 (2015)] and novel composite pairing scenario [O. Erten, R. Flint, and P. Coleman, Phys. Rev. Lett. 114, 027002 (2015)] of the Yb-doped heavy fermion superconductor CeCoIn5, we revisit the issue of superfluid response in the microscopic heavy fermion lattice model. However, from the literature, an explicit expression for the superfluid response function in heavy fermion superconductors is rare. In this paper, we investigate the superfluid density response function in the celebrated Kondo–Heisenberg model. To be specific, we derive the corresponding formalism from an effective fermionic large-N mean-field pairing Hamiltonian whose pairing interaction is assumed to originate from the effective local antiferromagnetic exchange interaction. Interestingly, we find that the physically correct, temperature-dependent superfluid density formula can only be obtained if the external electromagnetic field is directly coupled to the heavy fermion quasi-particle rather than the bare conduction electron or local moment. Such a unique feature emphasizes the key role of the Kondo-screening-renormalized heavy quasi-particle for low-temperature/energy thermodynamics and transport behaviors. As an important application, the theoretical result is compared to an experimental measurement in heavy fermion superconductors CeCoIn5 and Yb-doped Ce1−xYbxCoIn5 with fairly good agreement and the transition of the pairing symmetry in the latter material is explained as a simple doping effect. In addition, the requisite formalism for the commonly encountered nonmagnetic impurity and non-local electrodynamic effect are developed. Inspired by the success in explaining classic 115-series heavy fermion superconductors, we expect the present theory will be applied to understand other heavy fermion superconductors such as CeCu2Si2 and more generic multi-band superconductors.

Key wordsheavy fermion superconductor    Kondo lattice system    superfluid density
收稿日期: 2016-07-20      出版日期: 2016-10-17
Corresponding Author(s): Yin Zhong,Hong-Gang Luo   
 引用本文:   
. [J]. Frontiers of Physics, 2017, 12(5): 127101.
Yin Zhong,Lan Zhang,Can Shao,Hong-Gang Luo. Superfluid response in heavy fermion superconductors. Front. Phys. , 2017, 12(5): 127101.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-016-0625-y
https://academic.hep.com.cn/fop/CN/Y2017/V12/I5/127101
1 M. Tinkham, Introduction to Superconductivity, New York: McGraw-Hill, 1996
2 T. Xiang, d-wave superconductor, Beijing: Science Publisher, 2007 (in Chinese)
3 C. P. Poole, R. Prozorov, H. A. Farach, and R. J. Creswick, Superconductivity, 3rd Ed., Amsterdam: Elsevier, 2014
4 W. N. Hardy, D. A. Bonn, D. C. Morgan, R. Liang, and K. Zhang, Precision measurements of the temperature dependence of lin YBa2Cu3O6.95: Strong evidence for nodes in the gap function, Phys. Rev. Lett. 70(25), 3999 (1993)
https://doi.org/10.1103/PhysRevLett.70.3999
5 M. S. Kim, J. A. Skinta, T. R. Lemberger, A. Tsukada, and M. Naito, Magnetic penetration depth measurements of Pr2−xCexCuO4−d films on Buffered substrates: Evidence for a nodeless gap, Phys. Rev. Lett. 91(8), 087001 (2003)
https://doi.org/10.1103/PhysRevLett.91.087001
6 R. Prozorov and V. G. Kogan, London penetration depth in iron-based superconductors, Rep. Prog. Phys. 74(12), 124505 (2011)
https://doi.org/10.1088/0034-4885/74/12/124505
7 R. J. Ormeno, A. Sibley, C. E. Gough, S. Sebastian, and I. R. Fisher, Microwave conductivity and penetration depth in the heavy fermion superconductor CeCoIn5, Phys. Rev. Lett. 88(4), 047005 (2002)
https://doi.org/10.1103/PhysRevLett.88.047005
8 S. Özcan, D. M. Broun, B. Morgan, R. K. W. Haselwimmer, J. L. Sarrao, S. Kamal, C. P. Bidinosti, P. J. Turner, M. Raudsepp, and J. R. Waldram, London penetration depth measurements of the heavy-fermion superconductor CeCoIn5 near a magnetic quantum critical point, Europhys. Lett. 62(3), 412 (2003)
https://doi.org/10.1209/epl/i2003-00411-9
9 E. E. M. Chia, D. J. Van Harlingen, M. B. Salamon, B. D. Yanoff, I. Bonalde, and J. L. Sarrao, Nonlocality and strong coupling in the heavy fermion superconductor CeCoIn5: A penetration depth study, Phys. Rev. B 67(1), 014527 (2003)
https://doi.org/10.1103/PhysRevB.67.014527
10 K. Hashimoto, Y. Mizukami, R. Katsumata, H. Shishido, M. Yamashita, H. Ikeda, Y. Matsuda, J. A. Schlueter, J. D. Fletcher, A. Carrington, D. Gnida, D. Kaczorowski, and T. Shibauchi, Anomalous superfluid density in quantum critical superconductors, Proc. Natl. Acad. Sci. USA 110(9), 3293 (2013)
https://doi.org/10.1073/pnas.1221976110
11 C. J. S. Truncik, W. A. Huttema, P. J. Turner, S. Özcan, N. C. Murphy, P. R. Carrière, E. Thewalt, K. J. Morse, A. J. Koenig, J. L. Sarrao, and D. M. Broun, Nodal quasiparticle dynamics in the heavy fermion superconductor CeCoIn5 revealed by precision microwave spectroscopy, Nat. Commun. 4, 2477 (2013)
https://doi.org/10.1038/ncomms3477
12 L. Shu, D. E. MacLaughlin, C. M. Varma, O. O. Bernal, P. C. Ho, R. H. Fukuda, X. P. Shen, and M. B. Maple, Landau renormalizations of superfluid density in the heavy-fermion superconductor CeCoIn5, Phys. Rev. Lett. 113(16), 166401 (2014)
https://doi.org/10.1103/PhysRevLett.113.166401
13 H. Kim, M. A. Tanatar, R. Flint, C. Petrovic, R. Hu, B. D. White, I. K. Lum, M. B. Maple, and R. Prozorov, Nodal to nodeless superconducting energy-gap structure change concomitant with Fermi-surface reconstruction in the heavy-fermion compound CeCoIn5, Phys. Rev. Lett. 114(2), 027003 (2015)
https://doi.org/10.1103/PhysRevLett.114.027003
14 C. Petrovic, P. G. Pagliuso, M. F. Hundley, R. Movshovich, J. L. Sarrao, J. D. Thompson, Z. Fisk, and P. Monthoux, Heavy-fermion superconductivity in Ce- CoIn5 at 2.3 K, J. Phys.: Condens. Matter 13(17), 337 (2001)
https://doi.org/10.1088/0953-8984/13/17/103
15 R. Movshovich, M. Jaime, J. D. Thompson, C. Petrovic, Z. Fisk, P. G. Pagliuso, and J. L. Sarrao, Unconventional superconductivity in CeIrIn5 and CeCoIn5: Specific heat and thermal conductivity studies, Phys. Rev. Lett. 86(22), 5152 (2001)
https://doi.org/10.1103/PhysRevLett.86.5152
16 K. An, T. Sakakibara, R. Settai, Y. Onuki, M. Hiragi, M. Ichioka, and K. Machida, Sign reversal of field-angle resolved heat capacity oscillations in a heavy fermion superconductor CeCoIn5 and dx2−y2 pairing symmetry, Phys. Rev. Lett. 104(3), 037002 (2010)
https://doi.org/10.1103/PhysRevLett.104.037002
17 K. Izawa, H. Yamaguchi, Y. Matsuda, H. Shishido, R. Settai, and Y. Onuki, Angular position of nodes in the superconducting gap of quasi-2D heavy-fermion superconductor CeCoIn5, Phys. Rev. Lett. 87(5), 057002 (2001)
https://doi.org/10.1103/PhysRevLett.87.057002
18 T. Tayama, A. Harita, T. Sakakibara, Y. Haga, H. Shishido, R. Settai and Y. Onuki, Unconventional heavy-fermion superconductor CeCoIn5: dc magnetization study at temperatures down to 50 mK, Phys. Rev. B 65, 180504(R) (2002)
19 Y. Kohori, Y. Yamato, Y. Iwamoto, T. Kohara, E. D. Bauer, M. B. Maple, and J. L. Sarrao, NMR and NQR studies of the heavy fermion superconductors CeTIn5 (T=Co and Ir), Phys. Rev. B 64(13), 134526 (2001)
https://doi.org/10.1103/PhysRevB.64.134526
20 S. Ernst, S. Wirth, F. Steglich, Z. Fisk, J. L. Sarrao, and J. D. Thompson, Scanning tunneling microscopy studies on CeCoIn5 and CeIrIn5, Phys. Status Solidi B 247(3), 624 (2010)
https://doi.org/10.1002/pssb.200983035
21 C. Stock, C. Broholm, J. Hudis, H. J. Kang, and C. Petrovic, Spin resonance in the d-wave superconductor CeCoIn5, Phys. Rev. Lett. 100(8), 087001 (2008)
https://doi.org/10.1103/PhysRevLett.100.087001
22 M. P. Allan, F. Massee, D. K. Morr, J. Van Dyke, A. W. Rost, A. P. Mackenzie, C. Petrovic, and J. C. Davis, Imaging Cooper pairing of heavy fermions in CeCoIn5, Nat. Phys. 9(8), 468 (2013)
https://doi.org/10.1038/nphys2671
23 B. B. Zhou, S. Misra, E. H. da Silva Neto, P. Aynajian, R. E. Baumbach, J. D. Thompson, E. D. Bauer, and A. Yazdani, Visualizing nodal heavy fermion superconductivity in CeCoIn5, Nat. Phys. 9(8), 474 (2013)
https://doi.org/10.1038/nphys2672
24 J. Van Dyke, F. Massee, M. P. Allan, J. C. Davis, C. Petrovic, and D. K. Morr, Direct evidence for a magnetic f-electron mediated pairing mechanism of heavyfermion superconductivity in CeCoIn5, Proc. Natl. Acad. Sci. USA 111(32), 11663 (2014)
https://doi.org/10.1073/pnas.1409444111
25 Y. Xu, J. K. Dong, L. I. Lum, J. Zhang, X. C. Hong, L. P. He, K. F. Wang, Y. C. Ma, C. Petrovic, M. B. Maple, L. Shu, and S. Y. Li, Universal heat conduction in Ce1−xYbxCoIn5: Evidence for robust nodal d-wave superconducting gap, Phys. Rev. B 93(6), 064502 (2016)
https://doi.org/10.1103/PhysRevB.93.064502
26 O. Erten, R. Flint, and P. Coleman, Molecular pairing and fully gapped superconductivity in Yb-doped Ce- CoIn5, Phys. Rev. Lett. 114(2), 027002 (2015)
https://doi.org/10.1103/PhysRevLett.114.027002
27 C. M. Varma, K. Miyake, and S. Schmitt-Rink, London penetration depth of heavy-fermion superconductors, Phys. Rev. Lett. 57(5), 626 (1986)
https://doi.org/10.1103/PhysRevLett.57.626
28 P. Coleman, A. M. Tsvelik, N. Andrei, and H. Y. Kee, Co-operative Kondo effect in the two-channel Kondo lattice, Phys. Rev. B 60(5), 3608 (1999)
https://doi.org/10.1103/PhysRevB.60.3608
29 P. Coleman and N. Andrei, Kondo-stabilised spin liquids and heavy fermion superconductivity, J. Phys.: Condens. Matter 1(26), 4057 (1989)
https://doi.org/10.1088/0953-8984/1/26/003
30 Y. Liu, H. Li, G. M. Zhang, and L. Yu, d-wave superconductivity induced by short-range antiferromagnetic correlations in the two-dimensional Kondo lattice model, Phys. Rev. B 86(2), 024526 (2012)
https://doi.org/10.1103/PhysRevB.86.024526
31 Y. Liu, G. M. Zhang, and L. Yu, Pairing symmetry of heavy fermion superconductivity in the two-dimensional Kondo–Heisenberg lattice model, Chin. Phys. Lett. 31(8), 087102 (2014)
https://doi.org/10.1088/0256-307X/31/8/087102
32 J. P. Hu and H. Ding, Local antiferromagnetic exchange and collaborative Fermi surface as key ingredients of high temperature superconductors, Sci. Rep. 2, 381 (2012)
https://doi.org/10.1038/srep00381
33 D. J. Scalapino, A common thread: The pairing interaction for unconventional superconductors, Rev. Mod. Phys. 84(4), 1383 (2012)
https://doi.org/10.1103/RevModPhys.84.1383
34 P. W. Anderson, P. A. Lee, M. Randeria, T. M. Rice, N. Trivedi, and F. C. Zhang, The physics behind high temperature superconducting cuprates: The plain vanilla version of RVB, J. Phys.: Condens. Matter 16(24), R755 (2004)
https://doi.org/10.1088/0953-8984/16/24/R02
35 P. A. Lee, N. Nagaosa, and X. G. Wen, Doping a Mott insulator: Physics of high-temperature superconductivity, Rev. Mod. Phys. 78(1), 17 (2006)
https://doi.org/10.1103/RevModPhys.78.17
36 Y. Zhong, L. Zhang, H. T. Lu, and H. G. Luo, Fermionology in the Kondo–Heisenberg model: the case of CeCoIn5, Eur. Phys. J. B 88(9), 238 (2015)
https://doi.org/10.1140/epjb/e2015-60419-4
37 P. Coleman, Introduction to Many Body Physics, Chapters 15 to 18, Cambridge: Cambridge University Press, 2015
https://doi.org/10.1017/CBO9781139020916
38 C. Pfleiderer, Superconducting phases of f-electron compounds, Rev. Mod. Phys. 81(4), 1551 (2009)
https://doi.org/10.1103/RevModPhys.81.1551
39 L. Shu, D. E. MacLaughlin, W. P. Beyermann, R. H. Heffner, G. D. Morris, O. O. Bernal, F. D. Callaghan, J. E. Sonier, W. M. Yuhasz, N. A. Frederick, and M. B. Maple, Penetration depth, multiband superconductivity, and absence of muon-induced perturbation in superconducting PrOs4Sb12, Phys. Rev. B 79(17), 174511 (2009)
https://doi.org/10.1103/PhysRevB.79.174511
40 X. Y. Tee, H. G. Luo, T. Xiang, D. Vandervelde, M. B. Salamon, H. Sugawara, H. Sato, C. Panagopoulos, and E. E. M. Chia, Penetration depth study of LaOs4Sb12: Multiband s-wave superconductivity, Phys. Rev. B 86(6), 064518 (2012)
https://doi.org/10.1103/PhysRevB.86.064518
41 T. Senthil, M. Vojta, and S. Sachdev, Weak magnetism and non-Fermi liquids near heavy-fermion critical points, Phys. Rev. B 69(3), 035111 (2004)
https://doi.org/10.1103/PhysRevB.69.035111
42 Y. Zhong, K. Liu, Y. F. Wang, Y. Q. Wang, and H. G. Luo, Half-filled Kondo lattice on the honeycomb lattice, Eur. Phys. J. B 86(5), 195 (2013)
https://doi.org/10.1140/epjb/e2013-31091-7
43 L. Zhang, Y. F. Wang, Y. Zhong, and H. G. Luo, Extended s-wave pairing symmetry on the triangular lattice heavy fermion system, Eur. Phys. J. B 88(10), 267 (2015)
https://doi.org/10.1140/epjb/e2015-60518-2
44 A. Ramires and P. Coleman, Supersymmetric approach to heavy fermion systems, Phys. Rev. B 93(3), 035120 (2016)
https://doi.org/10.1103/PhysRevB.93.035120
45 N. Read and D. Newns, On the solution of the Coqblin- Schrieffer Hamiltonian by the large-N expansion technique, J. Phys. C 16, 3273 (1983)
46 P. Coleman, Mixed valence as an almost broken symmetry, Phys. Rev. B 35(10), 5072 (1987)
https://doi.org/10.1103/PhysRevB.35.5072
47 M. Z. Asadzadeh, M. Fabrizio, and F. Becca, Superconductivity from spoiling magnetism in the Kondo lattice model, Phys. Rev. B 90(20), 205113 (2014)
https://doi.org/10.1103/PhysRevB.90.205113
48 P. Coleman and A. H. Nevidomskyy, Frustration and the Kondo effect in heavy fermion materials, J. Low Temp. Phys. 161(1–2), 182 (2010)
https://doi.org/10.1007/s10909-010-0213-4
49 G. Kotliar and J. Liu, Superexchange mechanism and dwave superconductivity, Phys. Rev. B 38(7), 5142 (1988)
https://doi.org/10.1103/PhysRevB.38.5142
50 A. Koitzsch, I. Opahle, S. Elgazzar, S. V. Borisenko, J. Geck, V. B. Zabolotnyy, D. Inosov, H. Shiozawa, M. Richter, M. Knupfer, J. Fink, B. Büchner, E. D. Bauer, J. L. Sarrao, and R. Follath, Electronic structure of Ce- CoIn5 from angle-resolved photoemission spectroscopy, Phys. Rev. B 79(7), 075104 (2009)
https://doi.org/10.1103/PhysRevB.79.075104
51 X. W. Jia, Y. Liu, L. Yu, J. F. He, L. Zhao, W. T. Zhang, H. Y. Liu, G. D. Liu, S. L. He, J. Zhang, W. Lu, Y. Wu, X. L. Dong, L. L. Sun, G. L. Wang, Y. Zhu, X. Y. Wang, Q. J. Peng, Z. M. Wang, S. J. Zhang, F. Yang, Z. Y. Xu, C. T. Chen, and X. J. Zhou, Growth, characterization and fermi surface of heavy fermion Ce- CoIn5 superconductor, Chin. Phys. Lett. 28(5), 057401 (2011)
https://doi.org/10.1088/0256-307X/28/5/057401
52 L. Dudy, J. D. Denlinger, L. Shu, M. Janoschek, J. W. Allen, and M. B. Maple, Yb valence change in Ce1−xYbxCoIn5 from spectroscopy and bulk properties, Phys. Rev. B 88(16), 165118 (2013)
https://doi.org/10.1103/PhysRevB.88.165118
53 A. Polyakov, O. Ignatchik, B. Bergk, K. Götze, A. D. Bianchi, S. Blackburn, B. Prévost, G. Seyfarth, M. Côté, D. Hurt, C. Capan, Z. Fisk, R. G. Goodrich, I. Sheikin, M. Richter, and J. Wosnitza, Fermi-surface evolution in Yb-substituted CeCoIn5, Phys. Rev. B 85(24), 245119 (2012)
https://doi.org/10.1103/PhysRevB.85.245119
54 H. Hegger, C. Petrovic, E. G. Moshopoulou, M. F. Hundley, J. L. Sarrao, Z. Fisk, and J. D. Thompson, Pressure-induced superconductivity in Quasi-2D CeRhIn5, Phys. Rev. Lett. 84(21), 4986 (2000)
https://doi.org/10.1103/PhysRevLett.84.4986
55 T. Park, F. Ronning, H.-Q. Yuan, M. B. Salamon, R. Movshovich, J. L. Sarrao, and J. D. Thompson, Hidden magnetism and quantum criticality in the heavy fermion superconductor CeRhIn5, Nature (London) 440, 65 (2006)
https://doi.org/10.1038/nature04571
56 P. J. Hirschfeld and N. Goldenfeld, Effect of strong scattering on the low-temperature penetration depth of a dwave superconductor, Phys. Rev. B 48(6), 4219 (1993)
https://doi.org/10.1103/PhysRevB.48.4219
57 I. Kosztin and A. J. Leggett, Nonlocal effects on the magnetic penetration depth in d-wave superconductors, Phys. Rev. Lett. 79(1), 135 (1997)
https://doi.org/10.1103/PhysRevLett.79.135
58 E. Abrahams, J. Schmalian, and P. Wölfle, Strongcoupling theory of heavy-fermion criticality, Phys. Rev. B 90(4), 045105 (2014)
https://doi.org/10.1103/PhysRevB.90.045105
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed