Overlaying commensurate optical lattices with various configurations called superlattices can lead to exotic lattice topologies and, in turn, a discovery of novel physics. In this study, by overlapping the maxima of lattices, a new isolated structure is created, while the interference of minima can generate various “sublattice” patterns. Three different kinds of primitive lattices are used to demonstrate isolated square, triangular, and hexagonal “sublattice” structures in a two-dimensional optical superlattice, the patterns of which can be manipulated dynamically by tuning the polarization, frequency, and intensity of laser beams. In addition, we propose the method of altering the relative phase to adjust the tunneling amplitudes in “sublattices”. Our configurations provide unique opportunities to study particle entanglement in “lattices” formed by intersecting wells and to implement special quantum logic gates in exotic lattice geometries.
T. Calarco, U. Dorner, P. S. Julienne, C. J. Williams, and P. Zoller, Quantum computations with atoms in optical lattices: Marker qubits and molecular interactions, Phys. Rev. A 70(1), 012306 (2004)
https://doi.org/10.1103/PhysRevA.70.012306
3
L. Niu, D. Hu, S. Jin, X. Dong, X. Chen, and X. Zhou, Excitation of atoms in an optical lattice driven by polychromatic amplitude modulation, Opt. Express 23(8), 10064 (2015)
https://doi.org/10.1364/OE.23.010064
4
D. Hu, L. Niu, B. Yang, X. Chen, B. Wu, H. Xiong, and X. Zhou, Long-time nonlinear dynamical evolution for P-band ultracold atoms in an optical lattice, Phys. Rev. A 92(4), 043614 (2015)
https://doi.org/10.1103/PhysRevA.92.043614
5
M. Greiner, O. Mandel, T. Esslinger, T. W. Hansch, and I. Bloch, Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms, Nature 415(6867), 39 (2002)
https://doi.org/10.1038/415039a
6
C. Becker, P. Soltan-Panahi, J. Kronjäger, S. Dörscher, K. Bongs, and K. Sengstock, Ultracold quantum gases in triangular optical lattices, New J. Phys. 12(6), 065025 (2010)
https://doi.org/10.1088/1367-2630/12/6/065025
7
J. Sebby-Strabley, M. Anderlini, P. S. Jessen, and J. V. Porto, Lattice of double wells for manipulating pairs of cold atoms, Phys. Rev. A 73(3), 033605 (2006)
https://doi.org/10.1103/PhysRevA.73.033605
8
L. Santos, M. A. Baranov, J. I. Cirac, H. U. Everts, H. Fehrmann, and M. Lewenstein, Atomic quantum gases in Kagomé lattices, Phys. Rev. Lett. 93(3), 030601 (2004)
https://doi.org/10.1103/PhysRevLett.93.030601
9
G. B. Jo, J. Guzman, C. K. Thomas, P. Hosur, A. Vishwanath, and D. M. Stamper-Kurn, Ultracold atoms in a tunable optical Kagome lattice, Phys. Rev. Lett. 108(4), 045305 (2012)
https://doi.org/10.1103/PhysRevLett.108.045305
G. K. Brennen, C. M. Caves, P. S. Jessen, and I. H. Deutsch, Quantum logic gates in optical lattices, Phys. Rev. Lett. 82(5), 1060 (1999)
https://doi.org/10.1103/PhysRevLett.82.1060
12
L. Jiang, A. M. Rey, O. Romero-Isart, J. J. Garca- Ripoll, A. Sanpera, and M. D. Lukin, Preparation of decoherence-free cluster states with optical superlattices, Phys. Rev. A 79(2), 022309 (2009)
https://doi.org/10.1103/PhysRevA.79.022309
13
K. Nemoto, C. A. Holmes, G. J. Milburn, and W. J. Munro, Quantum dynamics of three coupled atomic Bose–Einstein condensates, Phys. Rev. A 63(1), 013604 (2000)
https://doi.org/10.1103/PhysRevA.63.013604
14
M. Hiller, T. Kottos, and T. Geisel, Complexity in parametric Bose–Hubbard Hamiltonians and structural analysis of eigenstates, Phys. Rev. A 73, 061604(R) (2006)
R. Franzosi and V. Penna, Self-trapping mechanisms in the dynamics of three coupled Bose–Einstein condensates, Phys. Rev. A 65(1), 013601 (2001)
https://doi.org/10.1103/PhysRevA.65.013601
17
P. Hsieh, C. Chung, J. McMillan, M. Tsai, M. Lu, N. Panoiu, and C. W. Wong, Photon transport enhanced by transverse Anderson localization in disordered superlattices, Nat. Phys. 11(3), 268 (2015)
https://doi.org/10.1038/nphys3211
18
M. Kunitski, S. Zeller, J. Voigtsberger, A. Kalinin, L. P. H. Schmidt, M. Schöffler, A. Czasch, W. Schöllkopf, R. E. Grisenti, T. Jahnke, D. Blume, and R. Dorner, Observation of the Efimov state of the helium trimer, Science 348(6234), 551 (2015)
https://doi.org/10.1126/science.aaa5601
X. Xu, B. Qing, X. Z. Chen, and X. J. Zhou, A simplified method for calculating the ac Stark shift of hyperfine levels of alkali-metal atoms, Phys. Lett. A 379(20–21), 1347 (2015)
https://doi.org/10.1016/j.physleta.2015.03.024
21
P. Soltan-Panahi, J. Struck, P. Hauke, A. Bick, W. Plenkers, G. Meineke, C. Becker, P. Windpassinger, M. Lewenstein, and K. Sengstock, Multi-component quantum gases in spin-dependent hexagonal lattices, Nat. Phys. 7(5), 434 (2011)
https://doi.org/10.1038/nphys1916
F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, Theory of Bose–Einstein condensation in trapped gases, Rev. Mod. Phys. 71(3), 463 (1999)
https://doi.org/10.1103/RevModPhys.71.463