Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2017, Vol. 12 Issue (5): 123201   https://doi.org/10.1007/s11467-016-0626-x
  本期目录
Isolated structures in two-dimensional optical superlattice
Xin-Hao Zou,Bao-Guo Yang,Xia Xu,Peng-Ju Tang,Xiao-Ji Zhou()
School of Electronics Engineering & Computer Science, Peking University, Beijing 100871, China
 全文: PDF(3308 KB)  
Abstract

Overlaying commensurate optical lattices with various configurations called superlattices can lead to exotic lattice topologies and, in turn, a discovery of novel physics. In this study, by overlapping the maxima of lattices, a new isolated structure is created, while the interference of minima can generate various “sublattice” patterns. Three different kinds of primitive lattices are used to demonstrate isolated square, triangular, and hexagonal “sublattice” structures in a two-dimensional optical superlattice, the patterns of which can be manipulated dynamically by tuning the polarization, frequency, and intensity of laser beams. In addition, we propose the method of altering the relative phase to adjust the tunneling amplitudes in “sublattices”. Our configurations provide unique opportunities to study particle entanglement in “lattices” formed by intersecting wells and to implement special quantum logic gates in exotic lattice geometries.

Key wordsoptical superlattice    isolated structures    exotic lattice geometries    quantum logic gates
收稿日期: 2016-07-07      出版日期: 2016-11-14
Corresponding Author(s): Xiao-Ji Zhou   
 引用本文:   
. [J]. Frontiers of Physics, 2017, 12(5): 123201.
Xin-Hao Zou,Bao-Guo Yang,Xia Xu,Peng-Ju Tang,Xiao-Ji Zhou. Isolated structures in two-dimensional optical superlattice. Front. Phys. , 2017, 12(5): 123201.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-016-0626-x
https://academic.hep.com.cn/fop/CN/Y2017/V12/I5/123201
1 I. M. Georgescu, S. Ashhab, and F. Nori, Quantum simulation, Rev. Mod. Phys. 86(1), 153 (2004)
https://doi.org/10.1103/RevModPhys.86.153
2 T. Calarco, U. Dorner, P. S. Julienne, C. J. Williams, and P. Zoller, Quantum computations with atoms in optical lattices: Marker qubits and molecular interactions, Phys. Rev. A 70(1), 012306 (2004)
https://doi.org/10.1103/PhysRevA.70.012306
3 L. Niu, D. Hu, S. Jin, X. Dong, X. Chen, and X. Zhou, Excitation of atoms in an optical lattice driven by polychromatic amplitude modulation, Opt. Express 23(8), 10064 (2015)
https://doi.org/10.1364/OE.23.010064
4 D. Hu, L. Niu, B. Yang, X. Chen, B. Wu, H. Xiong, and X. Zhou, Long-time nonlinear dynamical evolution for P-band ultracold atoms in an optical lattice, Phys. Rev. A 92(4), 043614 (2015)
https://doi.org/10.1103/PhysRevA.92.043614
5 M. Greiner, O. Mandel, T. Esslinger, T. W. Hansch, and I. Bloch, Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms, Nature 415(6867), 39 (2002)
https://doi.org/10.1038/415039a
6 C. Becker, P. Soltan-Panahi, J. Kronjäger, S. Dörscher, K. Bongs, and K. Sengstock, Ultracold quantum gases in triangular optical lattices, New J. Phys. 12(6), 065025 (2010)
https://doi.org/10.1088/1367-2630/12/6/065025
7 J. Sebby-Strabley, M. Anderlini, P. S. Jessen, and J. V. Porto, Lattice of double wells for manipulating pairs of cold atoms, Phys. Rev. A 73(3), 033605 (2006)
https://doi.org/10.1103/PhysRevA.73.033605
8 L. Santos, M. A. Baranov, J. I. Cirac, H. U. Everts, H. Fehrmann, and M. Lewenstein, Atomic quantum gases in Kagomé lattices, Phys. Rev. Lett. 93(3), 030601 (2004)
https://doi.org/10.1103/PhysRevLett.93.030601
9 G. B. Jo, J. Guzman, C. K. Thomas, P. Hosur, A. Vishwanath, and D. M. Stamper-Kurn, Ultracold atoms in a tunable optical Kagome lattice, Phys. Rev. Lett. 108(4), 045305 (2012)
https://doi.org/10.1103/PhysRevLett.108.045305
10 J. K. Pachos and P. L. Knight, Quantum computation with a one-dimensional optical lattice, Phys. Rev. Lett. 91(10), 107902 (2003)
https://doi.org/10.1103/PhysRevLett.91.107902
11 G. K. Brennen, C. M. Caves, P. S. Jessen, and I. H. Deutsch, Quantum logic gates in optical lattices, Phys. Rev. Lett. 82(5), 1060 (1999)
https://doi.org/10.1103/PhysRevLett.82.1060
12 L. Jiang, A. M. Rey, O. Romero-Isart, J. J. Garca- Ripoll, A. Sanpera, and M. D. Lukin, Preparation of decoherence-free cluster states with optical superlattices, Phys. Rev. A 79(2), 022309 (2009)
https://doi.org/10.1103/PhysRevA.79.022309
13 K. Nemoto, C. A. Holmes, G. J. Milburn, and W. J. Munro, Quantum dynamics of three coupled atomic Bose–Einstein condensates, Phys. Rev. A 63(1), 013604 (2000)
https://doi.org/10.1103/PhysRevA.63.013604
14 M. Hiller, T. Kottos, and T. Geisel, Complexity in parametric Bose–Hubbard Hamiltonians and structural analysis of eigenstates, Phys. Rev. A 73, 061604(R) (2006)
15 A. R. Kolovsky, Semiclassical quantization of the Bogoliubov spectrum, Phys. Rev. Lett. 99(2), 020401 (2007)
https://doi.org/10.1103/PhysRevLett.99.020401
16 R. Franzosi and V. Penna, Self-trapping mechanisms in the dynamics of three coupled Bose–Einstein condensates, Phys. Rev. A 65(1), 013601 (2001)
https://doi.org/10.1103/PhysRevA.65.013601
17 P. Hsieh, C. Chung, J. McMillan, M. Tsai, M. Lu, N. Panoiu, and C. W. Wong, Photon transport enhanced by transverse Anderson localization in disordered superlattices, Nat. Phys. 11(3), 268 (2015)
https://doi.org/10.1038/nphys3211
18 M. Kunitski, S. Zeller, J. Voigtsberger, A. Kalinin, L. P. H. Schmidt, M. Schöffler, A. Czasch, W. Schöllkopf, R. E. Grisenti, T. Jahnke, D. Blume, and R. Dorner, Observation of the Efimov state of the helium trimer, Science 348(6234), 551 (2015)
https://doi.org/10.1126/science.aaa5601
19 X. Zhou, X. Xu, X. Chen, and J. Chen, Magic wavelengths for terahertz clock transitions, Phys. Rev. A 81(1), 012115 (2010)
https://doi.org/10.1103/PhysRevA.81.012115
20 X. Xu, B. Qing, X. Z. Chen, and X. J. Zhou, A simplified method for calculating the ac Stark shift of hyperfine levels of alkali-metal atoms, Phys. Lett. A 379(20–21), 1347 (2015)
https://doi.org/10.1016/j.physleta.2015.03.024
21 P. Soltan-Panahi, J. Struck, P. Hauke, A. Bick, W. Plenkers, G. Meineke, C. Becker, P. Windpassinger, M. Lewenstein, and K. Sengstock, Multi-component quantum gases in spin-dependent hexagonal lattices, Nat. Phys. 7(5), 434 (2011)
https://doi.org/10.1038/nphys1916
22 A. S. Parkins and D. F. Walls, The physics of trapped dilute-gas Bose–Einstein condensates, Phys. Rep. 303(1), 1 (1998)
https://doi.org/10.1016/S0370-1573(98)00014-3
23 F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, Theory of Bose–Einstein condensation in trapped gases, Rev. Mod. Phys. 71(3), 463 (1999)
https://doi.org/10.1103/RevModPhys.71.463
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed