Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2017, Vol. 12 Issue (5): 126401   https://doi.org/10.1007/s11467-016-0631-0
  本期目录
Evaporation of a nanodroplet on a rough substrate
Yong-Juan Sun (孙永娟)1,2,Tao Huang (黄韬)1,2,Jun-Feng Zhao (赵俊锋)1,3,Yong Chen (陈勇)1,3()
1. Center of Soft Matter Physics and its Applications, Beihang University, Beijing 100191, China
2. Institute of Theoretical Physics, Lanzhou University, Lanzhou 730000, China
3. School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191, China
 全文: PDF(2911 KB)  
Abstract

The wettability and roughness of a substrate are crucial to the evolution of the contact angle and three-phase contact line in the evaporation of sessile droplets. In this paper, by performing molecular dynamics simulations for droplet evaporation at the nanoscale, we show that the wettability is more important than the roughness. For a smooth substrate, the evaporation behavior of a nanodroplet is similar to that at the macroscopic scale. This similarity is also observed in the case of a rough hydrophilic substrate. However, for a rough hydrophobic substrate, both the constant contact angle and contact line pinning appear in turn during evaporation. This suggests that the roughness of the hydrophobic substrate is useful for the evaporation technique in self-assembly at the nanoscale.

Key wordsevaporation    nanodroplet    roughness    wettability
收稿日期: 2016-05-23      出版日期: 2016-11-25
Corresponding Author(s): Yong Chen (陈勇)   
 引用本文:   
. [J]. Frontiers of Physics, 2017, 12(5): 126401.
Yong-Juan Sun (孙永娟),Tao Huang (黄韬),Jun-Feng Zhao (赵俊锋),Yong Chen (陈勇). Evaporation of a nanodroplet on a rough substrate. Front. Phys. , 2017, 12(5): 126401.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-016-0631-0
https://academic.hep.com.cn/fop/CN/Y2017/V12/I5/126401
1 D. S. Golovko, H. J. Butt, and E. Bonaccurso, Transition in the evaporation kinetics of water microdrops on hydrophilic surfaces, Langmuir 25(1), 75 (2009)
https://doi.org/10.1021/la803474x
2 D. H. Shina, S. H. Lee, J. Y. Jung, and J. Y. Yoo, Evaporating characteristics of sessile droplet on hydrophobic and hydrophilic surfaces, Microelectron. Eng. 86(4–6), 1350 (2009)
https://doi.org/10.1016/j.mee.2009.01.026
3 T. A. H. Nguyen, A. V. Nguyen, M. A. Hampton, Z. P. Xu, L. B. Huang, and V. Rudolph, Theoretical and experimental analysis of droplet evaporation on solid surfaces, Chem. Eng. Sci. 69(1), 522 (2012)
https://doi.org/10.1016/j.ces.2011.11.009
4 J. Zhang, F. Leroy, and F. Müller-Plathe, Influence of contact-line curvature on the evaporation of nanodroplets from solid substrates, Phys. Rev. Lett. 113(4), 046101 (2014)
https://doi.org/10.1103/PhysRevLett.113.046101
5 F. C. Wang and Y. P. Zhao, Contact angle hysteresis at the nanoscale: A molecular dynamics simulation study, Colloid Polym. Sci. 291(2), 307 (2013)
https://doi.org/10.1007/s00396-012-2747-2
6 T. Young, An essay on the cohesion of fluids, Philos. Trans. R. Soc. Lond. B 95(0), 65 (1805)
https://doi.org/10.1098/rstl.1805.0005
7 P. G. de Gennes, Wetting: Statics and dynamics, Rev. Mod. Phys. 57(3), 827 (1985)
https://doi.org/10.1103/RevModPhys.57.827
8 C. W. Extrand and Y. Kumagai, An experimental study of contact angle hysteresis, J. Colloid Interface Sci. 191(2), 378 (1997)
https://doi.org/10.1006/jcis.1997.4935
9 C. W. Extrand, A thermodynamic model for contact angle hysteresis, J. Colloid Interface Sci. 207(1), 11 (1998)
https://doi.org/10.1006/jcis.1998.5743
10 P. G. Pittoni, C. C. Chang, T. S. Yu, and S. Y. Lin, Evaporation of water drops on polymer surfaces: Pinning, depinning and dynamics of the triple line, Colloids Surf. A 432, 89 (2013)
https://doi.org/10.1016/j.colsurfa.2013.04.045
11 L. Grandas, C. Reynard, R. Santini, and L. Tadrist, Experimental study of the evaporation of a sessile drop on a heat wall: Wetting influence, Int. J. Therm. Sci. 44(2), 137 (2005)
https://doi.org/10.1016/j.ijthermalsci.2004.07.002
12 H. Huand and R. G. Larson, Evaporation of a sessile droplet on a substrate, J. Phys. Chem. B 106(6), 1334 (2002)
https://doi.org/10.1021/jp0118322
13 X. Shen, C. M. Ho, and T. S. Wong, Minimal size of coffee ring structure, J. Phys. Chem. B 114(16), 5269 (2010)
https://doi.org/10.1021/jp912190v
14 B. J. Fischer, Particle convection in an evaporating colloidal droplet, Langmuir 18(1), 60 (2002)
https://doi.org/10.1021/la015518a
15 H. M. Gorr, J. M. Zueger, and J. A. Barnard, Lysozyme pattern formation in evaporating drops, Langmuir 28(9), 4039 (2012)
https://doi.org/10.1021/la300125y
16 D. Orejon, K. Sefiane, and M. E. R. Shanahan, Stickslip of evaporating droplets: Substrate hydrophobicity and nanoparticle concentration, Langmuir 27(21), 12834 (2011)
https://doi.org/10.1021/la2026736
17 S. Maheshwari, L. Zhang, Y. Zhu, and H. C. Chang, Coupling between precipitation and contact-line dynamics: Multiring stains and stick-slip motion, Phys. Rev. Lett. 100(4), 044503 (2008)
https://doi.org/10.1103/PhysRevLett.100.044503
18 T. Furuta, A. Nakajima, M. Sakai, T. Isobe, Y. Kameshima, and K. Okada, Evaporation and sliding of water droplets on fluoroalkylsilane coatings with nanoscale roughness, Langmuir 25(10), 5417 (2009)
https://doi.org/10.1021/la8040665
19 J. H. Kim, S. I. Ahn, J. H. Kim, and W. C. Zin, Evaporation of water droplets on polymer surfaces, Langmuir 23(11), 6163 (2007)
https://doi.org/10.1021/la0636309
20 G. McHale, S. M. Rowan, M. I. Newton, and M. K. Banerjee, Evaporation and the wetting of a low-energy solid surface, J. Phys. Chem. B 102(11), 1964 (1998)
https://doi.org/10.1021/jp972552i
21 G. Li, S. M. Flores, C. Vavilala, M. Schmittel, and K. Graf, Evaporation dynamics of microdroplets on selfassembled monolayers of dialkyl disulfides, Langmuir 25(23), 13438 (2009)
https://doi.org/10.1021/la901422v
22 K. R. Khedir, G. K. Kannarpady, H. Ishihara, J. Woo, S. Trigwell, C. Ryerson, and A. S. Biris, Advanced studies of water evaporation kinetics over teflon-coated tungsten nanorod surfaces with variable hydrophobicity and morphology, J. Phys. Chem. C 115(28), 13804 (2011)
https://doi.org/10.1021/jp203238v
23 K. S. Birdi and D. T. Vu, Wettability and the evaporation rates of fluids from solid surfaces, J. Adhes. Sci. Technol. 7(6), 485 (1993)
https://doi.org/10.1163/156856193X00808
24 Y. Liu and X. Zhang, Evaporation dynamics of nanodroplets and their anomalous stability on rough substrates, Phys. Rev. E 88(1), 012404 (2013)
https://doi.org/10.1103/PhysRevE.88.012404
25 T. Furuta, M. Sakai, T. Isobe, and A. Nakajima, Evaporation behavior of microliter- and sub-nanoliter-scale water droplets on two different fluoroalkylsilane coatings, Langmuir 25(20), 11998 (2009)
https://doi.org/10.1021/la902848s
26 R. V. Sedev, J. G. Petrov, and A. W. Neumann, Effect of swelling of a polymer surface on advancing and receding contact angles, J. Colloid Interface Sci. 180(1), 36 (1996)
https://doi.org/10.1006/jcis.1996.0271
27 R. N. Wenzel, Resistance of solid surfaces to wetting by water, Ind. Eng. Chem. 28(8), 988 (1936)
https://doi.org/10.1021/ie50320a024
28 H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak, Molecular dynamics with coupling to an external bath, J. Chem. Phys. 81(8), 3684 (1984)
https://doi.org/10.1063/1.448118
29 S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys. 117(1), 1 (1995)
https://doi.org/10.1006/jcph.1995.1039
30 J. Zhang, F. Leroy, and F. Müller-Plathe, Evaporation of nanodroplets on heated substrates: A molecular dynamics simulation study, Langmuir 29(31), 9770 (2013)
https://doi.org/10.1021/la401655h
31 A. Checco, P. Guenoun, and J. Daillant, Nonlinear dependence of the contact angle of nanodroplets on contact line curvature, Phys. Rev. Lett. 91(18), 186101 (2003)
https://doi.org/10.1103/PhysRevLett.91.186101
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed