Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2017, Vol. 12 Issue (4): 120303   https://doi.org/10.1007/s11467-016-0638-6
  本期目录
Wave-function approach to Master equations for quantum transport and measurement
Shmuel Gurvitz()
Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot 76100, Israel
 全文: PDF(728 KB)  
Abstract

This paper presents a comprehensive review of the wave-function approach for derivation of the numberresolved Master equations, used for description of transport and measurement in mesoscopic systems. The review contains important amendments, clarifying subtle points in derivation of the Master equations and their validity. This completes the earlier works on the subject. It is demonstrated that the derivation does not assume weak coupling with the environment and reservoirs, but needs only high bias condition. This condition is very essential for validity of the Markovian Master equations, widely used for a phenomenological description of different physical processes.

Key wordsmesoscopic systems    quantum transport    Master equation    continuous measurement
收稿日期: 2016-10-30      出版日期: 2017-01-03
Corresponding Author(s): Shmuel Gurvitz   
 引用本文:   
. [J]. Frontiers of Physics, 2017, 12(4): 120303.
Shmuel Gurvitz. Wave-function approach to Master equations for quantum transport and measurement. Front. Phys. , 2017, 12(4): 120303.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-016-0638-6
https://academic.hep.com.cn/fop/CN/Y2017/V12/I4/120303
1 S. Datta, Electronic Transport in Mesoscopic Systems, Cambridge: Cambridge University Press, 1995
https://doi.org/10.1017/CBO9780511805776
2 Y. Imry, Introduction to Mesoscopic Physics, Oxford: Oxford University Press, 1997
3 Y. V. Nazarov and Y. M. Blanter, Quantum Transport: Introduction to Nanoscience, Cambridge: Cambridge University Press, 2009
https://doi.org/10.1017/CBO9780511626906
4 F. R. Waugh, M. J. Berry, D. J. Mar, R. M. Westervelt, K. L. Campman, and A. C. Gossard, Single-electron charging in double and triple quantum dots with tunable coupling, Phys. Rev. Lett. 75(4), 705 (1995)
https://doi.org/10.1103/PhysRevLett.75.705
5 L. I. Glazman and K. A. Matveev, Coulomb correlations in the tunneling through resonance centers, Pis’ma Zh. Eksp. Teor. Fiz. 48(7), 403 (1988) [JETP Lett. 48(7), 445 (1988)]
6 D. V. Averin and A. N. Korotkov, Influence of discrete energy spectrum on correlated single-electron tunneling via a mezoscopically small metal granule, Zh. Eksp. Teor. Fiz. 97(5), 1661 (1990) [Sov. Phys.-JETP 70, 937 (1990)]
7 C. W. J. Beenakker, Theory of Coulomb-blockade oscillations in the conductance of a quantum dot, Phys. Rev. B 44(4), 1646 (1991)
https://doi.org/10.1103/PhysRevB.44.1646
8 S. A. Gurvitz, H. J. Lipkin, and Ya. S. Prager, The Pauli principle and quantum transport, Mod. Phys. Lett. B 8(21–22), 1377 (1994)
https://doi.org/10.1142/S0217984994001345
9 J. H. Davies, S. Hershfield, P. Hyldgaard, and J. W. Wilkins, Current and rate equation for resonant tunneling, Phys. Rev. B 47(8), 4603 (1993)
https://doi.org/10.1103/PhysRevB.47.4603
10 Yu. V. Nazarov, Quantum interference, tunnel junctions and resonant tunneling interferometer, Physica B 189(1–4), 57 (1993)
https://doi.org/10.1016/0921-4526(93)90146-W
11 S. A. Gurvitz, H. J. Lipkin, and Ya. S. Prager, Interference effects in resonant tunneling and the Pauli principle, Phys. Lett. A 212(1–2), 91 (1996)
https://doi.org/10.1016/0375-9601(96)00015-1
12 C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom-Photon Interactions: Basic Processes and Applications, New York: Wiley, 1992
13 S. A. Gurvitz and Ya. S. Prager, Microscopic derivation of rate equations for quantum transport, Phys. Rev. B 53(23), 15932 (1996)
https://doi.org/10.1103/PhysRevB.53.15932
14 S. Kohler, J. Lehmann, and P. Hänggi, Driven quantum transport on the nanoscale, Phys. Rep. 406(6), 379 (2005)
https://doi.org/10.1016/j.physrep.2004.11.002
15 V. May and O. Kühn, Optical field control of charge transmission through a molecular wire. I. Generalized master equation description, Phys. Rev. B 77(11), 115439 (2008)
https://doi.org/10.1103/PhysRevB.77.115439
16 M. W. Y. Tu, and W. M. Zhang, Non-Markovian decoherence theory for a double-dot charge qubit, Phys. Rev. B 78(23), 235311 (2008)
https://doi.org/10.1103/PhysRevB.78.235311
17 X. Q. Li, Number-resolved master equation approach to quantum measurement and quantum transport, Front. Phys. 11(4), 110307 (2016), and references therein
https://doi.org/10.1007/s11467-016-0539-8
18 G. Lindblad, On the generators of quantum dynamical semigroups, Commun. Math. Phys. 48(2), 119 (1976)
https://doi.org/10.1007/BF01608499
19 S. A. Gurvitz, Measurements with a noninvasive detector and dephasing mechanism, Phys. Rev. B 56, 15215 (1997)
https://doi.org/10.1103/PhysRevB.56.15215
20 S. A. Gurvitz, Rate equations for quantum transport in multidot systems, Phys. Rev. 57(11), 6602 (1998)
https://doi.org/10.1103/PhysRevB.57.6602
21 B. Elattari, and S. A. Gurvitz, Influence of measurement on the lifetime and the linewidth of unstable systems, Phys. Rev. A 62(3), 032102 (2000)
https://doi.org/10.1103/PhysRevA.62.032102
22 L. Xu, Y. Cao, X. Q. Li, Y. J. Yan, and S. Gurvitz, Quantum transfer through a non-Markovian environment under frequent measurements and Zeno effect, Phys. Rev. A 90(2), 022108 (2014)
https://doi.org/10.1103/PhysRevA.90.022108
23 S. Gurvitz, Does the measurement take place when nobody observes it? Fortschr. Phys. (in press), arXiv: 1605.05553
24 T. H. Stoof, and Yu. V. Nazarov, Time-dependent resonant tunneling via two discrete states, Phys. Rev. B 53(3), 1050 (1996)
https://doi.org/10.1103/PhysRevB.53.1050
25 A. Wolf, G. De Chiara, E. Kajari, E. Lutz, and G. Morigi, Entangling two distant oscillators with a quantum reservoir, Europhys. Lett. 95(6), 60008 (2011)
https://doi.org/10.1209/0295-5075/95/60008
26 J. Ping, Y. Ye, L. Xu, X. Q. Li, Y. J. Yan, and S. Gurvitz, Undetectable quantum transfer through a continuum, Phys. Lett. A 377(9), 676 (2013)
https://doi.org/10.1016/j.physleta.2013.01.010
27 Y. Ye, Yu. Cao, X. Q. Li, and S. Gurvitz, Decoherence and the retrieval of lost information, Phys. Rev. B 84(24), 245311 (2011)
https://doi.org/10.1103/PhysRevB.84.245311
28 S. A. Gurvitz, Lapse of transmission phase and electron molecules in quantum dots, Phys. Rev. B 77, 201302(R) (2008)
29 S. A. Gurvitz and D. Mozyrsky, Quantum mechanical approach to decoherence and relaxation generated by fluctuating environment, Phys. Rev. B 77(7), 075325 (2008)
https://doi.org/10.1103/PhysRevB.77.075325
30 S. A. Gurvitz, Quantum interference in resonant tunneling and single spin measurements, IEEE Trans. Nano Technol. 4(1), 45 (2005)
https://doi.org/10.1109/TNANO.2004.840151
31 S. A. Gurvitz, D. Mozyrsky, and G. P. Berman, Coherent effects in magnetotransport through Zeeman-split levels, Phys. Rev. B 72(20), 205341 (2005)
https://doi.org/10.1103/PhysRevB.72.205341
32 M. Field, C. G. Smith, M. Pepper, D. A. Ritchie, J. E. F. Frost, G. A. C. Jones, and D. G. Hasko, Measurements of Coulomb blockade with a noninvasive voltage probe, Phys. Rev. Lett. 70(9), 1311 (1993)
https://doi.org/10.1103/PhysRevLett.70.1311
33 E. Buks, R. Shuster, M. Heiblum, D. Mahalu, and V. Umansky, Dephasing in electron interference by a “which-path” detector, Nature 391, 871 (1998)
https://doi.org/10.1038/36057
34 B. Misra and E. C. G. Sudarshan, The Zeno’s paradox in quantum theory, J. Math. Phys. 18(4), 756 (1977)
https://doi.org/10.1063/1.523304
35 C. Presilla, R. Onofrio, and U. Tambini, Measurement quantum mechanics and experiments on quantum Zeno effect, Ann. Phys. 248(1), 95 (1996)
https://doi.org/10.1006/aphy.1996.0052
36 A. G. Kofman and G. Kurizki, Quantum Zeno effect on atomic excitation decay in resonators, Phys. Rev. A 54(5), R3750 (1996)
https://doi.org/10.1103/PhysRevA.54.R3750
37 A. G. Kofman and G. Kurizki, Acceleration of quantum decay processes by frequent observations, Nature 405(6786), 546 (2000)
https://doi.org/10.1038/35014537
38 S. Gurvitz, Single-electron approach for time-dependent electron transport, Phys. Scr. T165, 014013 (2015)
https://doi.org/10.1088/0031-8949/2015/T165/014013
39 S. Gurvitz, A. Aharony, and O. Entin-Wohlman, Temporal evolution of resonant transmission under telegraph noise, Phys. Rev. 94(7), 075437 (2016)
https://doi.org/10.1103/PhysRevB.94.075437
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed