Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2017, Vol. 12 Issue (3): 120501   https://doi.org/10.1007/s11467-017-0624-7
  本期目录
On the ground state energy of the inhomogeneous Bose gas
V. B. Bobrov(),S. A. Trigger()
Joint Institute for High Temperatures, Russian Academy of Sciences, 13/19, Izhorskaia Str., Moscow 125412, Russia
 全文: PDF(135 KB)  
Abstract

Within the self-consistent Hartree–Fock approximation, an explicit in this approximation expression for the ground state energy of inhomogeneous Bose gas is derived as a functional of the inhomogeneous density of the Bose–Einstein condensate. The results obtained are based on existence of the off-diagonal long-range order in the single-particle density matrix for systems with a Bose–Einstein condensate. This makes it possible to avoid the use of anomalous averages. The explicit form of the kinetic energy, which differs from one in the Gross–Pitaevski approach, is found. The obtained form of kinetic energy is valid beyond the Hartree–Fock approximation and can be applied for arbitrary strong interparticle interaction.

Key wordsBose condensation    elementary excitations    single-particle Green function    density-density Green function    thermodynamic energy
收稿日期: 2016-05-05      出版日期: 2017-03-17
Corresponding Author(s): V. B. Bobrov,S. A. Trigger   
 引用本文:   
. [J]. Frontiers of Physics, 2017, 12(3): 120501.
V. B. Bobrov,S. A. Trigger. On the ground state energy of the inhomogeneous Bose gas. Front. Phys. , 2017, 12(3): 120501.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-017-0624-7
https://academic.hep.com.cn/fop/CN/Y2017/V12/I3/120501
1 M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, Observation of Bose– Einstein condensation in a dilute atomic vapor, Science 269(5221), 198 (1995)
https://doi.org/10.1126/science.269.5221.198
2 E. A. Cornell and C. E. Wieman, Nobel Lecture: Bose– Einstein condensation in a dilute gas, the first 70 years and some recent experiments, Rev. Mod. Phys. 74(3), 875 (2002)
https://doi.org/10.1103/RevModPhys.74.875
3 L. P. Pitaevskii, Bose–Einstein condensation in magnetic traps: Introduction to the theory, Phys. Usp. 41(6), 569 (1998)
https://doi.org/10.1070/PU1998v041n06ABEH000407
4 E. P. Gross, Structure of a quantized vortex in boson systems, Nuovo Cim. 20(3), 454 (1961)
https://doi.org/10.1007/BF02731494
5 L. P. Pitaevskii, Zh. Éksp. Teor. Fiz. 40, 646 (1961) [Sov. Phys. JETP 13, 451 (1961)]
6 L. P. Pitaevskii, Bose–Einstein condensates in a laser radiation field, Phys. Usp. 49(4), 333 (2006)
https://doi.org/10.1070/PU2006v049n04ABEH006006
7 E. H. Lieb, R. Seiringer, and J. Yngvason, Bosons in a trap: A rigorous derivation of the Gross–Pitaevskii energy functional, Phys. Rev. A 61(4), 043602 (2000)
https://doi.org/10.1103/PhysRevA.61.043602
8 E. M. Lifshitz and L. P. Pitaevskii, Statistical Physics, Part 2: Theory of the Condensed State, Oxford: Butterworth-Heinemann, 1980
9 W. H. Bassichis and L. L. Foldy, Analysis of the Bogoliubov method applied to a simple Boson model, Phys. Rev. 133(4A), 935 (1964)
https://doi.org/10.1103/PhysRev.133.A935
10 H. Stolz, Theory of interacting bosons without anomalous propagators, Physica A 86(1), 111 (1977)
https://doi.org/10.1016/0378-4371(77)90065-6
11 C. H. Zhang and H. A. Fertig, Superfluidity without symmetry breaking: The time-dependent Hartree–Fock approximation for Bose-condensed condensates, Phys. Rev. A 74(2), 023613 (2006)
https://doi.org/10.1103/PhysRevA.74.023613
12 P. Navez and K. Bongs, Gap and screening in Raman scattering of a Bose condensed gas, Europhys. Lett. 88(6), 60008 (2009)
https://doi.org/10.1209/0295-5075/88/60008
13 V. B. Bobrov, S. A. Trigger, and I. M. Yurin, Coexistence of “bogolons” and the single-particle excitation spectrum with a gap in the degenerate Bose gas, Phys. Lett. A 374(19–20), 1938 (2010)
https://doi.org/10.1016/j.physleta.2010.02.075
14 A. M. Ettouhami, Re-examining Bogoliubov’s theory of an interacting Bose gas, Prog. Theor. Phys. 127(3), 453 (2012)
https://doi.org/10.1143/PTP.127.453
15 V. B. Bobrov and S. A. Trigger, Structure factor and distribution function of degenerate Bose gases without anomalous averages, J. Low Temp. Phys. 170(1–2), 31 (2013)
https://doi.org/10.1007/s10909-012-0656-x
16 V. B. Bobrov, S. A. Triger, and P. Schram, Sov. Phys. JETP 80, 853 (1995)
17 V. B. Bobrov and S. A. Trigger, On the properties of systems with Bose–Einstein condensate in the Coulomb model of matter, Bull. Lebedev Phys. Inst. 42(1), 13 (2015)
https://doi.org/10.3103/S1068335615010042
18 V. B. Bobrov, A. G. Zagorodny, and S. A. Trigger, Coulomb interaction potential and Bose–Einstein condensate, Low Temp. Phys. 41, 901 (2015)
https://doi.org/10.1063/1.4936669
19 L. P. Kadanoff and G. Baym, Quantum Statistical Mechanics, New York: Benjamin, 1962
20 N. N. Bogolubov and N. N. Jr Bogolubov, Introduction to Quantum Statistical Mechanics, New York: Gordon and Breach, 1992
21 V. B. Bobrov, S. A. Trigger, and A. Zagorodny, Virial theorem, one-particle density matrix, and equilibrium condition in an external field, Phys. Rev. A 82(4), 044105 (2010)
https://doi.org/10.1103/PhysRevA.82.044105
22 V. L. Ginzburg and L. D. Landau, Zh. Eksp. Teor. Fiz. 20, 1064 (1950) (English transl.: L. D. Landau, Collected Papers, Oxford: Pergamon, 1965, p. 546)
23 O. Penrose and L. Onsager, Bose–Einstein condensation and liquid helium, Phys. Rev. 104(3), 576 (1956)
https://doi.org/10.1103/PhysRev.104.576
24 C. N. Yang, Concept of off-diagonal long-range order and the quantum phases of liquid He and of superconductors, Rev. Mod. Phys. 34(4), 694 (1962)
https://doi.org/10.1103/RevModPhys.34.694
25 V. B. Bobrov, S. A. Trigger, and A. G. Zagorodny, The off-diagonal long-range order and inhomogeneous Bose– Einstein condensate, Dokl. Phys. 60(4), 147 (2015)
https://doi.org/10.1134/S1028335815040011
26 F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, Theory of Bose–Einstein condensation in trapped gases, Rev. Mod. Phys. 71(3), 463 (1999)
https://doi.org/10.1103/RevModPhys.71.463
27 P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys. Rev. 136(3B), B864 (1964)
https://doi.org/10.1103/PhysRev.136.B864
28 R. O. Jones and O. Gunnarsson, The density functional formalism, its applications and prospects, Rev. Mod. Phys. 61(3), 689 (1989)
https://doi.org/10.1103/RevModPhys.61.689
29 N. N. Bogoliubov, On the theory of superfluidity, J. Phys. (USSR) 11, 23 (1947)
30 V. B. Bobrov, A. Zagorodny, and S. A. Trigger, Coulomb interaction potential and Bose–Einstein condensate, Low Temp. Phys. 41(11), 901 (2015)
https://doi.org/10.1063/1.4936669
31 N. Navon, S. Piatecki, K. Günter, B. Rem, T. C. Nguyen, F. Chevy, W. Krauth, and C. Salomon, Dynamics and thermodynamics of the low-temperature strongly interacting Bose gas, Phys. Rev. Lett. 107(13), 135301 (2011)
https://doi.org/10.1103/PhysRevLett.107.135301
32 T. L. Ho and Q. Zhou, Chromatin remodelling during development, Nature 463(7280), 1057 (2010)
https://doi.org/10.1038/nature08911
33 L. D. Landau and E. M. Lifshitz, Statistical Physics, Part 1, Oxford: Butterworth-Heinemann, 1980
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed