3×3 graphene superlattice,inter-valley scattering,"/>
Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2017, Vol. 12 Issue (4): 127306   https://doi.org/10.1007/s11467-017-0650-5
  本期目录
First-principles study on the electronic and transport properties of periodically nitrogen-doped graphene and carbon nanotube superlattices
Fuming Xu1,Zhizhou Yu2,3(),Zhirui Gong1,Hao Jin1
1. College of Physics and Energy, Shenzhen University, Shenzhen 518060, China
2. School of Physics and Technology, Nanjing Normal University, Nanjing 210023, China
3. Department of Physics and the Center of Theoretical and Computational Physics, The University of Hong Kong, Hong Kong, China
 全文: PDF(1297 KB)  
Abstract

Prompted by recent reports on 3×3 graphene superlattices with intrinsic inter-valley interactions, we perform first-principles calculations to investigate the electronic properties of periodically nitrogendoped graphene and carbon nanotube nanostructures. In these structures, nitrogen atoms substitute one-sixth of the carbon atoms in the pristine hexagonal lattices with exact periodicity to form perfect 3×3 superlattices of graphene and carbon nanotubes. Multiple nanostructures of 3×3 graphene ribbons and carbon nanotubes are explored, and all configurations show nonmagnetic and metallic behaviors. The transport properties of 3×3 graphene and carbon nanotube superlattices are calculated utilizing the non-equilibrium Green’s function formalism combined with density functional theory. The transmission spectrum through the pristine and 3×3 armchair carbon nanotube heterostructure shows quantized behavior under certain circumstances.

Key words3×3 graphene superlattice')" href="#">3×3 graphene superlattice    inter-valley scattering
收稿日期: 2016-11-24      出版日期: 2017-02-09
Corresponding Author(s): Zhizhou Yu   
 引用本文:   
. [J]. Frontiers of Physics, 2017, 12(4): 127306.
Fuming Xu,Zhizhou Yu,Zhirui Gong,Hao Jin. First-principles study on the electronic and transport properties of periodically nitrogen-doped graphene and carbon nanotube superlattices. Front. Phys. , 2017, 12(4): 127306.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-017-0650-5
https://academic.hep.com.cn/fop/CN/Y2017/V12/I4/127306
1 A. K. Geim and K. S. Novoselov, The rise of graphene, Nat. Mater. 6(3), 183 (2007)
https://doi.org/10.1038/nmat1849
2 I. ŽutićJ. Fabian, and S. Das Sarma, Spintronics: Fundamentals and applications, Rev. Mod. Phys. 76(2), 323 (2004)
https://doi.org/10.1103/RevModPhys.76.323
3 K. S. Novoselov, Graphene: Materials in the flatland, Rev. Mod. Phys. 83(3), 837 (2011)
https://doi.org/10.1103/RevModPhys.83.837
4 A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Rev. Mod. Phys. 81(1), 109 (2009)
https://doi.org/10.1103/RevModPhys.81.109
5 S. Das Sarma, S. Adam, E. H. Hwang, and E. Rossi, Electronic transport in two-dimensional graphene, Rev. Mod. Phys. 83(2), 407 (2011)
https://doi.org/10.1103/RevModPhys.83.407
6 Y. Xing, J. Wang, and Q. Sun, Focusing of electron flow in a bipolar graphene ribbon with different chiralities, Phys. Rev. B 81(16), 165425 (2010)
https://doi.org/10.1103/PhysRevB.81.165425
7 J. Li, B. Wang, F. Xu, Y. Wei, and J. Wang, Spindependent Seebeck effects in graphene-based molecular junctions, Phys. Rev. B 93(19), 195426 (2016)
https://doi.org/10.1103/PhysRevB.93.195426
8 C. Stampfer, S. Fringes, J. Güttinger, F. Molitor, C. Volk, B. Terrés, J. Dauber, S. Engels, S. Schnez, A. Jacobsen, S. Dröscher, T. Ihn, and K. Ensslin, Transport in graphene nanostructures, Front. Phys. 6(3), 271 (2011)
https://doi.org/10.1007/s11467-011-0182-3
9 L. F. Huang and Z. Zeng, Patterning graphene nanostripes in substrate-supported functionalized graphene: A promising route to integrated, robust, and superior transistors, Front. Phys. 7(3), 324 (2012)
https://doi.org/10.1007/s11467-011-0239-3
10 A. F. Morpurgo and F. Guinea, Intervalley scattering, long-range disorder, and effective time-reversal symmetry breaking in graphene, Phys. Rev. Lett. 97(19), 196804 (2006)
https://doi.org/10.1103/PhysRevLett.97.196804
11 E. McCann, K. Kechedzhi, V. I. Fal’ko, H. Suzuura, T. Ando, and B. L. Altshuler, Weak-localization magnetoresistance and valley symmetry in graphene, Phys. Rev. Lett. 97(14), 146805 (2006)
https://doi.org/10.1103/PhysRevLett.97.146805
12 D. Xiao, W. Yao, and Q. Niu, Valley-contrasting physics in graphene: Magnetic moment and topological transport, Phys. Rev. Lett. 99(23), 236809 (2007)
https://doi.org/10.1103/PhysRevLett.99.236809
13 W. Yao, D. Xiao, and Q. Niu, Valley-dependent optoelectronics from inversion symmetry breaking, Phys. Rev. B 77(23), 235406 (2008)
https://doi.org/10.1103/PhysRevB.77.235406
14 A. Rycerz, J. Tworzydło, and C. W. J. Beenakker, Valley filter and valley valve in graphene, Nat. Phys. 3(3), 172 (2007)
15 D. Gunlycke and C. T. White, Graphene valley filter using a line defect, Phys. Rev. Lett. 106(13), 136806 (2011)
https://doi.org/10.1103/PhysRevLett.106.136806
16 Y. Liu, J. Song, Y. Li, Y. Liu, and Q. Sun, Controllable valley polarization using graphene multiple topological line defects, Phys. Rev. B 87(19), 195445 (2013)
https://doi.org/10.1103/PhysRevB.87.195445
17 J. H. Chen, G. Autès, N. Alem, F. Gargiulo, A. Gautam, M. Linck, C. Kisielowski, O. V. Yazyev, S. G. Louie, and A. Zettl, Controlled growth of a line defect in graphene and implications for gate-tunable valley filtering, Phys. Rev. B 89(12), 121407 (2014)
https://doi.org/10.1103/PhysRevB.89.121407
18 S. G. Cheng, J. Zhou, H. Jiang, and Q.-F. Sun, The valley filther efficiency of monolayer graphene and bilayer graphene line defect model, New J. Phys. 18, 103024 (2016)
https://doi.org/10.1088/1367-2630/18/10/103024
19 Z. Qiao, J. Jung, Q. Niu, and A. H. MacDonald, Electronic highways in bilayer graphene, Nano Lett. 11(8), 3453 (2011)
https://doi.org/10.1021/nl201941f
20 Z. Qiao, J. Jung, C. Lin, Y. Ren, A. H. MacDonald, and Q. Niu, Current partition at topological channel intersections, Phys. Rev. Lett. 112(20), 206601 (2014)
https://doi.org/10.1103/PhysRevLett.112.206601
21 Y. Ren, Z. Qiao, and Q. Niu, Topological phases in two dimensional materials: A review, Rep. Rrog. Phys. 79(6), 066501 (2016)
https://doi.org/10.1088/0034-4885/79/6/066501
22 T. Fujita, M. B. A. Jalil, and S. G. Tan, Valley filter in strain engineered graphene, Appl. Phys. Lett. 97(4), 043508 (2010)
https://doi.org/10.1063/1.3473725
23 Z. Khatibi, H. Rostami, and R. Asgari, Valley polarized transport in a strained graphene based corbino disc, Phys. Rev. B 88(19), 195426 (2013)
https://doi.org/10.1103/PhysRevB.88.195426
24 F. Zhai, Y. Ma, and K. Chang, Valley beam splitter based on strained graphene, New J. Phys. 13(8), 083029 (2011)
https://doi.org/10.1088/1367-2630/13/8/083029
25 Y. Jiang, T. Low, K. Chang, M. I. Katsnelson, and F. Guinea, Generation of pure bulk valley current in graphene, Phys. Rev. Lett. 110(4), 046601 (2013)
https://doi.org/10.1103/PhysRevLett.110.046601
26 X. Chen, L. Zhang, and H. Guo, Valley caloritronics and its realization by graphene nanoribbons, Phys. Rev. B 92(15), 155427 (2015)
https://doi.org/10.1103/PhysRevB.92.155427
27 Z. Yu, F. Xu, and J. Wang, Valley seebeck effect in gate tunable zigzag graphene nanoribbons, Carbon 99, 451 (2016)
https://doi.org/10.1016/j.carbon.2015.12.033
28 Y. Ren, X. Deng, Z. Qiao, C. Li, J. Jung, C. Zeng, Z. Zhang, and Q. Niu, Single-valley engineering in graphene superlattices, Phys. Rev. B 91(24), 245415 (2015)
https://doi.org/10.1103/PhysRevB.91.245415
29 K. H. Jin and S. H. Jhi, Proximity-induced giant spinorbit interaction in epitaxial graphene on a topological insulator, Phys. Rev. B 87(7), 075442 (2013)
https://doi.org/10.1103/PhysRevB.87.075442
30 J. Zhang, C. Triola, and E. Rossi, Proximity effect in graphene–topological-insulator heterostructures, Phys. Rev. Lett. 112(9), 096802 (2014)
https://doi.org/10.1103/PhysRevLett.112.096802
31 F. Xu, Z. Yu, Y. Ren, B. Wang, Y. Wei, and Z. Qiao, Transmission spectra and valley processing of graphene and carbon nanotube superlattices with intervalley coupling, New J. Phys. 18(11), 113011 (2016)
https://doi.org/10.1088/1367-2630/18/11/113011
32 D. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang, and G. Yu, Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties, Nano Lett. 9(5), 1752 (2009)
https://doi.org/10.1021/nl803279t
33 R. Lv, Q. Li, A. R. Botello-Méndez, T. Hayashi, B. Wang, A. Berkdemir, Q. Hao, A. L. Elías, R. Cruz-Silva, H. R. Gutiérrez, Y. A. Kim, H. Muramatsu, J. Zhu, M. Endo, H. Terrones, J.C. Charlier, M. Pan, and M. Terrones, Nitrogendoped graphene: Beyond single substitution and enhanced molecular sensing, Sci. Rep. 2, 586 (2012)
https://doi.org/10.1038/srep00586
34 J. Cai, C. A. Pignedoli, L. Talirz, P. Ruffieux, H. Söde, L. Liang, V. Meunier, R. Berger, R. Li, X. Feng, K. Müllen, and R. Fasel, Graphene nanoribbon heterojunctions, Nat. Nanotechnol. 9(11), 896 (2014)
https://doi.org/10.1038/nnano.2014.184
35 X. Wang, X. Li, L. Zhang, Y. Yoon, P. K. Weber, H. Wang, J. Guo, and H. Dai, N-doping of graphene through eletrothermal reactions with ammonia, Science 324(5928), 768 (2009)
https://doi.org/10.1126/science.1170335
36 P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50(24), 17953 (1994)
https://doi.org/10.1103/PhysRevB.50.17953
37 G. Kresse and J. Hafner, Ab initiomolecular dynamics for liquid metals, Phys. Rev. B 47(1), 558 (1993)
https://doi.org/10.1103/PhysRevB.47.558
38 G. Kresse and J. Furthmüller, Efficiency of ab-initiototal energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6(1), 15 (1996)
https://doi.org/10.1016/0927-0256(96)00008-0
39 J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
https://doi.org/10.1103/PhysRevLett.77.3865
40 J. Taylor, H. Guo, and J. Wang, Ab initio modeling of quantum transport properties of molecular electronic devices, Phys. Rev. B 63(24), 245407 (2001)
https://doi.org/10.1103/PhysRevB.63.245407
41 Y. W. Son, M. L. Cohen, and S. G. Louie, Energy gaps in graphene nanoribbons, Phys. Rev. Lett. 97(21), 216803 (2006)
https://doi.org/10.1103/PhysRevLett.97.216803
42 V. Barone, O. Hod, and G. E. Scuseria, Electronic structure and stability of semiconducting graphene nanoribbons, Nano Lett. 6(12), 2748 (2006)
https://doi.org/10.1021/nl0617033
43 The chemical potentials of hydrogen, nitrogen and carbon are chosen as the binding energy per atom of the H2 and N2 molecules, and the cohesive energy per atom of a single graphene sheet, respectively.
44 T. Ando, Theory of electronic states and transport in carbon nanotubes, J. Phys. Soc. Jpn. 74(3), 777 (2005)
https://doi.org/10.1143/JPSJ.74.777
45 J. C. Charlier, X. Blase, and S. Roche, Electronic and transport properties of nanotubes, Rev. Mod. Phys. 79(2), 677 (2007)
https://doi.org/10.1103/RevModPhys.79.677
46 C. T. White and T. N. Todorov, Quantum electronics. Nanotubes go ballistic, Nature 411(6838), 649 (2001)
https://doi.org/10.1038/35079720
47 W. Liang, M. Bockrath, D. Bozovic, J. H. Hafner, M. Tinkham, and H. Park, Fabry-Perot interference in a nanotube electron waveguide, Nature 411(6838), 665 (2001)
https://doi.org/10.1038/35079517
48 G. A. Steele, G. Götz, and L. P. Kouwenhoven, Tunable few-electrodes double quantum dots and Klein tunnelling in ultra-clean carbon nanotubes, Nat. Nanotechnol. 4(6), 363 (2009)
https://doi.org/10.1038/nnano.2009.71
49 Z. Li, H. Qian, J. Wu, B. L. Gu, and W. Duan, Role of symmetry in the transport properties of graphene nanoribbons under bias, Phys. Rev. Lett. 100(20), 206802 (2008)
https://doi.org/10.1103/PhysRevLett.100.206802
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed