Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2017, Vol. 12 Issue (3): 128301   https://doi.org/10.1007/s11467-017-0654-1
  本期目录
Translocation time of a polymer chain through an energy gradient nanopore
Meng-Bo Luo1(),Shuang Zhang1,2,Fan Wu1,Li-Zhen Sun3
1. Department of Physics, Zhejiang University, Hangzhou 310027, China
2. College of Science, Qinzhou University, Qinzhou 535011, China
3. Department of Applied Physics, Zhejiang University of Technology, Hangzhou 310023, China
 全文: PDF(507 KB)  
Abstract

The translocation time of a polymer chain through an interaction energy gradient nanopore was studied by Monte Carlo simulations and the Fokker–Planck equation with double-absorbing boundary conditions. Both the simulation and calculation revealed three different behaviors for polymer translocation. These behaviors can be explained qualitatively from free-energy landscapes obtained for polymer translocation at different parameters. Results show that the translocation time of a polymer chain through a nanopore can be tuned by suitably designing the interaction energy gradient.

Key wordspolymer chain    translocation time    nanopore    Monte Carlo simulation    Fokker–Planck equation
收稿日期: 2016-10-18      出版日期: 2017-02-09
Corresponding Author(s): Meng-Bo Luo   
 引用本文:   
. [J]. Frontiers of Physics, 2017, 12(3): 128301.
Meng-Bo Luo,Shuang Zhang,Fan Wu,Li-Zhen Sun. Translocation time of a polymer chain through an energy gradient nanopore. Front. Phys. , 2017, 12(3): 128301.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-017-0654-1
https://academic.hep.com.cn/fop/CN/Y2017/V12/I3/128301
1 S. M. Simon and G. Blobel, A protein-conducting channel in the endoplasmic reticulum, Cell 65(3), 371 (1991)
https://doi.org/10.1016/0092-8674(91)90455-8
2 J. Helenius, D. T. W. Ng, C. L. Marolda, P. Walter, M. A. Valvano, and M. Aebi, Translocation of lipid-linked oligosaccharides across the ER membrane requires Rft1 protein, Nature 415(6870), 447 (2002)
https://doi.org/10.1038/415447a
3 B. Alberts, D. Bray, J. Lewis, M. Raft, K. Roberts, and J. D. Watson, Molecular Biology of the Cell, New York: Garland Science, 1994
4 V. R. Lingappa, J. Chaidez, C. S. Yost, and J. Hedgpeth, Determinants for protein localization: Betalactamase signal sequence directs globin across microsomal membranes, Proc. Natl. Acad. Sci. USA 81(2), 456 (1984)
https://doi.org/10.1073/pnas.81.2.456
5 J. Han, S. W. Turner, and H. G. Craighead, Entropic trapping and escape of long DNA molecules at submicron size constriction, Phys. Rev. Lett. 83(8), 1688 (1999)
https://doi.org/10.1103/PhysRevLett.83.1688
6 J. Han and H. G. Craighead, Separation of long DNA molecules in a microfabricated entropic trap array, Science 288(5468), 1026 (2000)
https://doi.org/10.1126/science.288.5468.1026
7 B. H. Zimm and S. D. Levene, Problems and prospects in the theory of gel electrophoresis of DNA, Q. Rev. Biophys. 25(02), 171 (1992)
https://doi.org/10.1017/S0033583500004662
8 J. J. Kasianowicz, E. Brandin, D. Branton, and D. W. Deamer, Characterization of individual polynucleotide molecules using a membrane channel, Proc. Natl. Acad. Sci. USA 93(24), 13770 (1996)
https://doi.org/10.1073/pnas.93.24.13770
9 A. Meller, L. Nivon, and D. Branton, Voltage-driven DNA translocations through a nanopore, Phys. Rev. Lett. 86(15), 3435 (2001)
https://doi.org/10.1103/PhysRevLett.86.3435
10 A. J. Storm, C. Storm, J. Chen, H. Zandbergen, J. F. Joanny, and C. Dekker, Fast DNA translocation through a solid-state nanopore, Nano Lett. 5(7), 1193 (2005)
https://doi.org/10.1021/nl048030d
11 S. W. Kowalczyk, A. R. Hall, and C. Dekker, Detection of local protein structures along DNA using solid-state nanopores, Nano Lett. 10(1), 324 (2010)
https://doi.org/10.1021/nl903631m
12 A. Aksimentiev, Deciphering ionic current signatures of DNA transport through a nanopore, Nanoscale 2(4), 468 (2010)
https://doi.org/10.1039/b9nr00275h
13 C. T. Wong and M. Muthukumar, Polymer translocation through alpha-hemolysin pore with tunable polymer-pore electrostatic interaction, J. Chem. Phys. 133(4), 045101 (2010)
https://doi.org/10.1063/1.3464333
14 B. M. Venkatesan and R. Bashir, Nanopore sensors for nucleic acid analysis, Nat. Nanotechnol. 6(10), 615 (2011)
https://doi.org/10.1038/nnano.2011.129
15 D. Panja, G. T. Barkema, and A. B. Kolomeisky, Through the eye of the needle: Recent advances in understanding biopolymer translocation, J. Phys.: Condens. Matter 25(41), 413101 (2013)
https://doi.org/10.1088/0953-8984/25/41/413101
16 A. Biesemans, M. Soskine, and G. Maglia, A protein rotaxane controls the translocation of proteins across a ClyA nanopore, Nano Lett. 15(9), 6076 (2015)
https://doi.org/10.1021/acs.nanolett.5b02309
17 J. Mathe, A. Aksimentiev, D. R. Nelson, K. Schulten, and A. Meller, Orientation discrimination of singlestranded DNA inside the a-hemolysin membrane channel, Proc. Natl. Acad. Sci. USA 102(35), 12377 (2005)
https://doi.org/10.1073/pnas.0502947102
18 I. M. Derrington, T. Z. Butler, M. D. Collins, E. Manrao, M. Pavlenok, M. Niederweis, and J. H. Gundlach, Nanopore DNA sequencing with MspA, Proc. Natl. Acad. Sci. USA 107(37), 16060 (2010)
https://doi.org/10.1073/pnas.1001831107
19 L. Liu, C. Yang, K. Zhao, J. Y. Li, and H. C. Wu, Ultrashort single-walled carbon nanotubes in a lipid bilayer as a new nanopore sensor, Nat. Commun. 4, 2989 (2013)
https://doi.org/10.1038/ncomms3989
20 D. Rodriguez-Larrea and H. Bayley, Multistep protein unfolding during nanopore translocation, Nat. Nanotechnol. 8(4), 288 (2013)
https://doi.org/10.1038/nnano.2013.22
21 J. Wilson, L. Sloman, Z. He, and A. Aksimentiev, Graphene nanopores for protein sequencing, Adv. Funct. Mater. 26(27), 4830 (2016)
https://doi.org/10.1002/adfm.201601272
22 W. Sung and P. J. Park, Polymer translocation through a pore in a membrane, Phys. Rev. Lett. 77(4), 783 (1996)
https://doi.org/10.1103/PhysRevLett.77.783
23 M. Muthukumar, Polymer translocation through a hole, J. Chem. Phys. 111(22), 10371 (1999)
https://doi.org/10.1063/1.480386
24 M. Muthukumar, Polymer escape through a nanopore, J. Chem. Phys. 118(11), 5174 (2003)
https://doi.org/10.1063/1.1553753
25 A. Gopinathan and Y. W. Kim, Polymer translocation in crowded environments, Phys. Rev. Lett. 99(22), 228106 (2007)
https://doi.org/10.1103/PhysRevLett.99.228106
26 J. L. A. Dubbeldam, V. G. Rostiashvili, A. Milchev, and T. A. Vilgis, Forced translocation of a polymer: Dynamical scaling versus molecular dynamics simulation, Phys. Rev. E 85(4), 041801 (2012)
https://doi.org/10.1103/PhysRevE.85.041801
27 J. M. Polson and A. C. M. McCaffrey, Polymer translocation dynamics in the quasi-static limit, J. Chem. Phys. 138(17), 174902 (2013)
https://doi.org/10.1063/1.4803022
28 J. Chuang, Y. Kantor, and M. Kardar, Anomalous dynamics of translocation,Phys. Rev. E 65(1), 011802 (2001)
https://doi.org/10.1103/PhysRevE.65.011802
29 A. Milchev, K. Binder, and A. Bhattacharya, Polymer translocation through a nanopore induced by adsorption: Monte Carlo simulation of a coarse-grained model, J. Chem. Phys. 121(12), 6042 (2004)
https://doi.org/10.1063/1.1785776
30 K. Luo, T. Ala-Nissila, S. C. Ying, and A. Bhattacharya, Influence of polymer-pore interactions on translocation, Phys. Rev. Lett. 99(14), 148102 (2007)
https://doi.org/10.1103/PhysRevLett.99.148102
31 M. B. Luo, Translocation of polymer chains through interacting nanopores, Polymer 48(26), 7679 (2007)
https://doi.org/10.1016/j.polymer.2007.10.041
32 A. Milchev, L. Klushin, A. Skvortsov, and K. Binder, Ejection of a polymer chain from a nanopore: Theory and computer experiment, Macromolecules 43(16), 6877 (2010)
https://doi.org/10.1021/ma1003826
33 M. B. Luo and W. P. Cao, Influence of polymer-pore interaction on the translocation of a polymer through a nanopore, Phys. Rev. E 86(3), 031914 (2012)
https://doi.org/10.1103/PhysRevE.86.031914
34 C. J. Rasmussen, A. Vishnyakov, and A. V. Neimark, Translocation dynamics of freely jointed Lennard–Jones chains into adsorbing pores, J. Chem. Phys. 137(14), 144903 (2012)
https://doi.org/10.1063/1.4754632
35 H. de Haan and G. Slater, Translocation of “rod-coil” polymers: Probing the structure of single molecules within nanopores, Phys. Rev. Lett. 110(4), 048101 (2013)
https://doi.org/10.1103/PhysRevLett.110.048101
36 S. Markosyan, P. M. De Biase, L. Czapla, O. Samoylova, G. Singh, J. Cuervo, D. P. Tieleman, and S. Y. Noskov, Effect of confinement on DNA, solvent and counterion dynamics in a model biological nanopore, Nanoscale 6(15), 9006 (2014)
https://doi.org/10.1039/C3NR06559F
37 C. Wang, Y. C. Chen, S. Zhang, and M. B. Luo, Translocation of diblock copolymer through compound channels: A Monte Carlo simulation study, Macromolecules 47(20), 7215 (2014)
https://doi.org/10.1021/ma501308h
38 A. Fiasconaro, J. J. Mazo, and F. Falo, Active polymer translocation in the three-dimensional domain, Phys. Rev. E 91(2), 022113 (2015)
https://doi.org/10.1103/PhysRevE.91.022113
39 R. Adhikari and A. Bhattacharya, Deconvoluting chain heterogeneity from driven translocation through a nanopore, EPL 109(3), 38001 (2015)
https://doi.org/10.1209/0295-5075/109/38001
40 D. Mondal and M. Muthukumar, Ratchet rectification effect on the translocation of a flexible polyelectrolyte chain, J. Chem. Phys. 145(8), 084906 (2016)
https://doi.org/10.1063/1.4961505
41 L. Z. Sun, W. P. Cao, and M. B. Luo, Free energy landscape for the translocation of polymer through an interacting pore, J. Chem. Phys. 131(19), 194904 (2009)
https://doi.org/10.1063/1.3264944
42 Y. Liu and L. Yobas, Slowing DNA Translocation in a nanofluidic field-effect transistor, ACS Nano 10(4), 3985 (2016)
https://doi.org/10.1021/acsnano.6b00610
43 S. Zhang, C. Wang, L. Z. Sun, C. Y. Li, and M. B. Luo, Polymer translocation through a gradient channel, J. Chem. Phys. 139(4), 044902 (2013)
https://doi.org/10.1063/1.4815918
44 G. Maglia, M. R. Restrepo, E. Mikhailova, and H. Bayley, Enhanced translocation of single DNA molecules through a-hemolysin nanopores by manipulation of internal charge, Proc. Natl. Acad. Sci. USA 105(50), 19720 (2008)
https://doi.org/10.1073/pnas.0808296105
45 D. Wang, S. Harrer, B. Luan, G. Stolovitzky, H. Peng, and A. Afzali-Ardakani, Regulating the transport of DNA through biofriendly nanochannels in a thin solid membrane, Sci. Rep. 4, 3985 (2014)
46 Y. He, M. Tsutsui, M. Taniguchi, and T. Kawai, DNA capture in nanopores for genome sequencing: challenges and opportunities, J. Mater. Chem. 22(27), 13423 (2012)
https://doi.org/10.1039/c2jm31495a
47 P. M. De Biase, E. N. Ervin, P. Pal, O. Samoylova, S. Markosyan, M. G. Keehan, G. A. Barrall, and S. Y. Noskov, What controls open-pore and residual currents in the first sensing zone of alpha-hemolysin nanopore? Combined experimental and theoretical study, Nanoscale 8(22), 11571 (2016)
https://doi.org/10.1039/C6NR00164E
48 S. G. Whittington, Self-avoiding walks terminally attached to an interface, J. Chem. Phys. 63(2), 779 (1975)
https://doi.org/10.1063/1.431357
49 S. Mirigian, Y. Wang, and M. Muthukumar, Translocation of a heterogeneous polymer, J. Chem. Phys. 137(6), 064904 (2012)
https://doi.org/10.1063/1.4742970
50 K. Luo and R. Metzler, Polymer translocation into a fluidic channel through a nanopore, Phys. Rev. E 82(2), 021922 (2010)
https://doi.org/10.1103/PhysRevE.82.021922
51 C. Wang, Y. C. Chen, Y. L. Zhou, and M. B. Luo, Escape of polymer chains from an attractive channel under electrical force, J. Chem. Phys. 134(6), 064905 (2011)
https://doi.org/10.1063/1.3553261
52 M. B. Luo, Translocation of polymer through nanopore: Dissipative particle dynamics simulation, Chin. Sci. Bull. 59(35), 4960 (2014)
https://doi.org/10.1007/s11434-014-0621-y
53 E. Slonkina and A. B. Kolomeisky, Polymer translocation through a long nanopore, J. Chem. Phys. 118(15), 7112 (2003)
https://doi.org/10.1063/1.1560932
54 H. Li, C. J. Qian, C. Wang, and M. B. Luo, Critical adsorption of a flexible polymer confined between two parallel interacting surfaces, Phys. Rev. E 87(1), 012602 (2013)
https://doi.org/10.1103/PhysRevE.87.012602
55 M. B. Luo, Q. H. Yang, C. Y. Zhang, and F. Wu, Study on the diffusion of polymer in long cylindrical tubes, Polymer 101, 192 (2016)
https://doi.org/10.1016/j.polymer.2016.08.066
56 J. Clarke, H. C. Wu, L. Jayasinghe, A. Patel, S. Reid, and H. Bayley, Continuous base identification for singlemolecule nanopore DNA sequencing, Nat. Nanotechnol. 4(4), 265 (2009)
https://doi.org/10.1038/nnano.2009.12
57 M. Muthukumar, Communication: Charge, diffusion, and mobility of proteins through nanopores, J. Chem. Phys. 141(8), 081104 (2014)
https://doi.org/10.1063/1.4894401
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed