Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2017, Vol. 12 Issue (4): 127208   https://doi.org/10.1007/s11467-017-0655-0
  本期目录
Landau quantization of Dirac fermions in graphene and its multilayers
Long-Jing Yin (殷隆晶),Ke-Ke Bai (白珂珂),Wen-Xiao Wang (王文晓),Si-Yu Li (李思宇),Yu Zhang (张钰),Lin He (何林)()
The Center for Advanced Quantum Studies, Department of Physics, Beijing Normal University, Beijing 100875, China
 全文: PDF(66703 KB)  
Abstract

When electrons are confined in a two-dimensional (2D) system, typical quantum–mechanical phenomena such as Landau quantization can be detected. Graphene systems, including the single atomic layer and few-layer stacked crystals, are ideal 2D materials for studying a variety of quantum–mechanical problems. In this article, we review the experimental progress in the unusual Landau quantized behaviors of Dirac fermions in monolayer and multilayer graphene by using scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS). Through STS measurement of the strong magnetic fields, distinct Landau-level spectra and rich level-splitting phenomena are observed in different graphene layers. These unique properties provide an effective method for identifying the number of layers, as well as the stacking orders, and investigating the fundamentally physical phenomena of graphene. Moreover, in the presence of a strain and charged defects, the Landau quantization of graphene can be significantly modified, leading to unusual spectroscopic and electronic properties.

Key wordsLandau quantization    graphene    STM/STS    stacking order    strain and defect
收稿日期: 2016-12-28      出版日期: 2017-04-13
Corresponding Author(s): Lin He (何林)   
 引用本文:   
. [J]. Frontiers of Physics, 2017, 12(4): 127208.
Long-Jing Yin (殷隆晶),Ke-Ke Bai (白珂珂),Wen-Xiao Wang (王文晓),Si-Yu Li (李思宇),Yu Zhang (张钰),Lin He (何林). Landau quantization of Dirac fermions in graphene and its multilayers. Front. Phys. , 2017, 12(4): 127208.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-017-0655-0
https://academic.hep.com.cn/fop/CN/Y2017/V12/I4/127208
1 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)
https://doi.org/10.1126/science.1102896
2 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene, Nature 438(7065), 197 (2005)
https://doi.org/10.1038/nature04233
3 K. S. Novoselov, Graphene: Materials in the flatland, Rev. Mod. Phys. 83(3), 837 (2011)
https://doi.org/10.1103/RevModPhys.83.837
4 A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Rev. Mod. Phys. 81(1), 109 (2009)
https://doi.org/10.1103/RevModPhys.81.109
5 M. O. Goerbig, Electronic properties of graphene in a strong magnetic field, Rev. Mod. Phys. 83(4), 1193 (2011)
https://doi.org/10.1103/RevModPhys.83.1193
6 M. I. Katsnelson, K. S. Novoselov, and A. K. Geim, Chiral tunnelling and the Klein paradox in graphene, Nat. Phys. 2(9), 620 (2006)
7 A. Bostwick, T. Ohta, T. Seyller, K. Horn, and E. Rotenberg, Quasiparticle dynamics in graphene, Nat. Phys. 3(1), 36 (2007)
8 A. K. Geim and K. S. Novoselov, The rise of graphene, Nat. Mater. 6(3), 183 (2007)
https://doi.org/10.1038/nmat1849
9 A. K. Geim, Graphene: Status and prospects, Science 324(5934), 1530 (2009)
https://doi.org/10.1126/science.1158877
10 S. Das Sarma, S. Adam, E. H. Hwang, and E. Rossi, Electronic transport in two-dimensional graphene, Rev. Mod. Phys. 83(2), 407 (2011)
https://doi.org/10.1103/RevModPhys.83.407
11 D. N. Basov, M. M. Fogler, A. Lanzara, F. Wang, and Y. Zhang, Graphene spectroscopy, Rev. Mod. Phys. 86(3), 959 (2014)
https://doi.org/10.1103/RevModPhys.86.959
12 W. Y. He, Z. D. Chu, and L. He, Chiral tunneling in a twisted graphene bilayer, Phys. Rev. Lett. 111(6), 066803 (2013)
https://doi.org/10.1103/PhysRevLett.111.066803
13 F. D. Haldane, Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the “Parity anomaly”, Phys. Rev. Lett. 61(18), 2015 (1988)
https://doi.org/10.1103/PhysRevLett.61.2015
14 C. Beenakker, Andreev reflection and Klein tunneling in graphene, Rev. Mod. Phys. 80(4), 1337 (2008)
https://doi.org/10.1103/RevModPhys.80.1337
15 A. F. Young and P. Kim, Quantum interference and Klein tunnelling in graphene heterojunctions, Nat. Phys. 5(3), 222 (2009)
16 J. Baringhaus, M. Ruan, F. Edler, A. Tejeda, M. Sicot, A. Taleb-Ibrahimi, A. P. Li, Z. Jiang, E. H. Conrad, C. Berger, C. Tegenkamp, and W. A. de Heer, Exceptional ballistic transport in epitaxial graphene nanoribbons, Nature 506(7488), 349 (2014)
https://doi.org/10.1038/nature12952
17 Z. Chu and L. He, Origin of room-temperature singlechannel ballistic transport in zigzag graphene nanoribbons, Science China Materials 58(9), 677 (2015)
https://doi.org/10.1007/s40843-015-0081-y
18 J. J. Palacios, Graphene nanoribbons: Electrons go ballistic, Nat. Phys. 10(3), 182 (2014)
19 B. Hunt, J. D. Sanchez-Yamagishi, A. F. Young, M. Yankowitz, B. J. LeRoy, K. Watanabe, T. Taniguchi, P. Moon, M. Koshino, P. Jarillo-Herrero, and R. C. Ashoori, Massive Dirac fermions and Hofstadter butterfly in a van der Waals Heterostructure, Science 340(6139), 1427 (2013)
https://doi.org/10.1126/science.1237240
20 C. R. Dean, L. Wang, P. Maher, C. Forsythe, F. Ghahari, Y. Gao, J. Katoch, M. Ishigami, P. Moon, M. Koshino, T. Taniguchi, K. Watanabe, K. L. Shepard, J. Hone, and P. Kim, Hofstadter’s butterfly and the fractal quantum Hall effect in moiré superlattices, Nature 497(7451), 598 (2013)
https://doi.org/10.1038/nature12186
21 L. A. Ponomarenko, R. V. Gorbachev, G. L. Yu, D. C. Elias, R. Jalil, A. A. Patel, A. Mishchenko, A. S. Mayorov, C. R. Woods, J. R. Wallbank, M. Mucha-Kruczynski, B. A. Piot, M. Potemski, I. V. Grigorieva, K. S. Novoselov, F. Guinea, V. I. Fal’ko, and A. K. Geim, Cloning of Dirac fermions in graphene superlattices, Nature 497(7451), 594 (2013)
https://doi.org/10.1038/nature12187
22 G. L. Yu, R. V. Gorbachev, J. S. Tu, A. V. Kretinin, Y. Cao, R. Jalil, F. Withers, L. A. Ponomarenko, B. A. Piot, M. Potemski, D. C. Elias, X. Chen, K. Watanabe, T. Taniguchi, I. V. Grigorieva, K. S. Novoselov, V. I. Fal’ko, A. K. Geim, and A. Mishchenko, Hierarchy of Hofstadter states and replica quantum Hall ferromagnetism in graphene superlattices, Nat. Phys. 10(7), 525 (2014)
23 H. Schmidt, J. C. Rode, D. Smirnov, and R. J. Haug, Superlattice structures in twisted bilayers of folded graphene, Nat. Commun. 5, 5742 (2014)
https://doi.org/10.1038/ncomms6742
24 A. M. DaSilva, J. Jung, and A. H. MacDonald, Fractional hofstadter states in graphene on hexagonal boron nitride, Phys. Rev. Lett. 117(3), 036802 (2016)
https://doi.org/10.1103/PhysRevLett.117.036802
25 Y. Barlas, K. Yang, and A. H. MacDonald, Quantum Hall effects in graphene-based two-dimensional electron systems, Nanotechnology 23(5), 052001 (2012)
https://doi.org/10.1088/0957-4484/23/5/052001
26 V. Gusynin and S. Sharapov, Unconventional integer quantum Hall effect in graphene, Phys. Rev. Lett. 95(14), 146801 (2005)
https://doi.org/10.1103/PhysRevLett.95.146801
27 Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene, Nature 438(7065), 201 (2005)
https://doi.org/10.1038/nature04235
28 Z. Jiang, Y. Zhang, H. L. Stormer, and P. Kim, Quantum Hall states near the charge-neutral Dirac point in graphene, Phys. Rev. Lett. 99(10), 106802 (2007)
https://doi.org/10.1103/PhysRevLett.99.106802
29 K. I. Bolotin, F. Ghahari, M. D. Shulman, H. L. Stormer, and P. Kim, Observation of the fractional quantum Hall effect in graphene, Nature 462(7270), 196 (2009)
https://doi.org/10.1038/nature08582
30 X. Du, I. Skachko, F. Duerr, A. Luican, and E. Y. Andrei, Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene, Nature 462(7270), 192 (2009)
https://doi.org/10.1038/nature08522
31 C. R. Dean, A. F. Young, P. Cadden-Zimansky, L. Wang, H. Ren, K. Watanabe, T. Taniguchi, P. Kim, J. Hone, and K. L. Shepard, Multicomponent fractional quantum Hall effect in graphene, Nat. Phys. 7(9), 693 (2011)
32 R. B. Laughlin, Quantized Hall conductivity in two dimensions, Phys. Rev. B 23(10), 5632 (1981)
https://doi.org/10.1103/PhysRevB.23.5632
33 T. Matsui, H. Kambara, Y. Niimi, K. Tagami, M. Tsukada, and H. Fukuyama, STS observations of Landau levels at graphite surfaces, Phys. Rev. Lett. 94(22), 226403 (2005)
https://doi.org/10.1103/PhysRevLett.94.226403
34 Y. Zhang, Z. Jiang, J. P. Small, M. S. Purewal, Y. W. Tan, M. Fazlollahi, J. D. Chudow, J. A. Jaszczak, H. L. Stormer, and P. Kim, Landau-level splitting in graphene in high magnetic fields, Phys. Rev. Lett. 96(13), 136806 (2006)
https://doi.org/10.1103/PhysRevLett.96.136806
35 A. Kou, B. E. Feldman, A. J. Levin, B. I. Halperin, K. Watanabe, T. Taniguchi, and A. Yacoby, Electron–hole asymmetric integer and fractional quantum Hall effect in bilayer graphene, Science 345(6192), 55 (2014)
https://doi.org/10.1126/science.1250270
36 P. Maher, L. Wang, Y. Gao, C. Forsythe, T. Taniguchi, K. Watanabe, D. Abanin, Z. Papiće, P. Cadden-Zimansky, J. Hone, P. Kim, and C. R. Dean, Tunable fractional quantum Hall phases in bilayer graphene, Science 345(6192), 61 (2014)
https://doi.org/10.1126/science.1252875
37 Y. Shi, Y. Lee, S. Che, Z. Pi, T. Espiritu, P. Stepanov, D. Smirnov, C. N. Lau, and F. Zhang, Energy gaps and layer polarization of integer and fractional quantum Hall states in bilayer graphene, Phys. Rev. Lett. 116(5), 056601 (2016)
https://doi.org/10.1103/PhysRevLett.116.056601
38 B. E. Feldman, B. Krauss, J. H. Smet, and A. Yacoby, Unconventional sequence of fractional quantum Hall states in suspended graphene, Science 337(6099), 1196 (2012)
https://doi.org/10.1126/science.1224784
39 G. M. Rutter, J. N. Crain, N. P. Guisinger, T. Li, P. N. First, and J. A. Stroscio, Scattering and interference in epitaxial graphene, Science 317(5835), 219 (2007)
https://doi.org/10.1126/science.1142882
40 K. S. Novoselov, Z. Jiang, Y. Zhang, S. Morozov, H. Stormer, U. Zeitler, J. Maan, G. Boebinger, P. Kim, and A. Geim, Room-temperature quantum Hall effect in graphene, Science 315(5817), 1379 (2007)
https://doi.org/10.1126/science.1137201
41 J. G. Checkelsky, L. Li, and N. P. Ong, Zero-energy state in graphene in a high magnetic field, Phys. Rev. Lett. 100(20), 206801 (2008)
https://doi.org/10.1103/PhysRevLett.100.206801
42 Editorial, 2D materials, Nat. Photonics 10(4), 201 (2016)
https://doi.org/10.1038/nphoton.2016.61
43 P. Wallace, The band theory of graphite, Phys. Rev. 71(9), 622 (1947)
https://doi.org/10.1103/PhysRev.71.622
44 A. L. Grushina, D. K. Ki, M. Koshino, A. A. Nicolet, C. Faugeras, E. McCann, M. Potemski, and A. F. Morpurgo, Insulating state in tetralayers reveals an even– odd interaction effect in multilayer graphene, Nat. Commun. 6, 6419 (2015)
https://doi.org/10.1038/ncomms7419
45 L. J. Yin, S. Y. Li, J. B. Qiao, J. C. Nie, and L. He, Landau quantization in graphene monolayer, Bernal bilayer, and Bernal trilayer on graphite surface, Phys. Rev. B 91(11), 115405 (2015)
https://doi.org/10.1103/PhysRevB.91.115405
46 E. J. Mele, Interlayer coupling in rotationally faulted multilayer graphenes, J. Phys. D Appl. Phys. 45(15), 154004 (2012)
https://doi.org/10.1088/0022-3727/45/15/154004
47 E. McCann and V. Fal’ko, Landau-level degeneracy and quantum Hall effect in a graphite bilayer, Phys. Rev. Lett. 96(8), 086805 (2006)
https://doi.org/10.1103/PhysRevLett.96.086805
48 K. S. Novoselov, E. McCann, S. V. Morozov, V. I. Fal’ko, M. I. Katsnelson, U. Zeitler, D. Jiang, F. Schedin, and A. K. Geim, Unconventional quantum Hall effect and Berry’s phase of 2π in bilayer graphene, Nat. Phys. 2(3), 177 (2006)
49 M. L. Sadowski, G. Martinez, M. Potemski, C. Berger, and W. A. de Heer, Landau level spectroscopy of ultrathin graphite layers, Phys. Rev. Lett. 97(26), 266405 (2006)
https://doi.org/10.1103/PhysRevLett.97.266405
50 D. S. Lee, C. Riedl, T. Beringer, A. H. Castro Neto, K. von Klitzing, U. Starke, and J. H. Smet, Quantum Hall effect in twisted bilayer graphene, Phys. Rev. Lett. 107(21), 216602 (2011)
https://doi.org/10.1103/PhysRevLett.107.216602
51 J. D. Sanchez-Yamagishi, T. Taychatanapat, K. Watanabe, T. Taniguchi, A. Yacoby, and P. Jarillo-Herrero, Quantum Hall effect, screening, and layer-polarized insulating states in twisted bilayer graphene, Phys. Rev. Lett. 108(7), 076601 (2012)
https://doi.org/10.1103/PhysRevLett.108.076601
52 M. Morgenstern, Scanning tunneling microscopy and spectroscopy of graphene on insulating substrates, physica status solidi (b) 248(11), 2423 (2011)
53 E. Y. Andrei, G. Li, and X. Du, Electronic properties of graphene: A perspective from scanning tunneling microscopy and magnetotransport, Rep. Prog. Phys. 75(5), 056501 (2012)
https://doi.org/10.1088/0034-4885/75/5/056501
54 A. Deshpande and B. J. LeRoy, Scanning probe microscopy of graphene, Physica E 44(4), 743 (2012)
https://doi.org/10.1016/j.physe.2011.11.024
55 D. L. Miller, K. D. Kubista, G. M. Rutter, M. Ruan, W. A. de Heer, P. N. First, and J. A. Stroscio, Observing the quantization of zero mass carriers in graphene, Science 324(5929), 924 (2009)
https://doi.org/10.1126/science.1171810
56 Y. J. Song, A. F. Otte, Y. Kuk, Y. Hu, D. B. Torrance, P. N. First, W. A. de Heer, H. Min, S. Adam, M. D. Stiles, A. H. MacDonald, and J. A. Stroscio, Highresolution tunnelling spectroscopy of a graphene quartet, Nature 467(7312), 185 (2010)
https://doi.org/10.1038/nature09330
57 G. Li, A. Luican, and E. Y. Andrei, Scanning tunneling spectroscopy of graphene on graphite, Phys. Rev. Lett. 102(17), 176804 (2009)
https://doi.org/10.1103/PhysRevLett.102.176804
58 Y. Niimi, H. Kambara, T. Matsui, D. Yoshioka, and H. Fukuyama, Real-space imaging of alternate localization and extension of quasi-two-dimensional electronic states at graphite surfaces in magnetic fields, Phys. Rev. Lett. 97(23), 236804 (2006)
https://doi.org/10.1103/PhysRevLett.97.236804
59 M. Morgenstern, J. Klijn, C. Meyer, and R. Wiesendanger, Real-space observation of drift states in a twodimensional electron system at high magnetic fields, Phys. Rev. Lett. 90(5), 056804 (2003)
https://doi.org/10.1103/PhysRevLett.90.056804
60 K. Hashimoto, C. Sohrmann, J. Wiebe, T. Inaoka, F. Meier, Y. Hirayama, R. A. Römer, R. Wiesendanger, and M. Morgenstern, Quantum Hall transition in real space: From localized to extended states, Phys. Rev. Lett. 101(25), 256802 (2008)
https://doi.org/10.1103/PhysRevLett.101.256802
61 Y. Okada, W. Zhou, C. Dhital, D. Walkup, Y. Ran, Z. Wang, S. D. Wilson, and V. Madhavan, Visualizing Landau levels of dirac electrons in a one-dimensional potential, Phys. Rev. Lett. 109(16), 166407 (2012)
https://doi.org/10.1103/PhysRevLett.109.166407
62 P. Cheng, C. Song, T. Zhang, Y. Zhang, Y. Wang, J. F. Jia, J. Wang, Y. Wang, B. F. Zhu, X. Chen, X. Ma, K. He, L. Wang, X. Dai, Z. Fang, X. Xie, X. L. Qi, C. X. Liu, S. C. Zhang, and Q. K. Xue, Landau quantization of topological surface states in Bi2Se3, Phys. Rev. Lett. 105(7), 076801 (2010)
https://doi.org/10.1103/PhysRevLett.105.076801
63 Y. Jiang, Y. Wang, M. Chen, Z. Li, C. Song, K. He, L. Wang, X. Chen, X. Ma, and Q. K. Xue, Landau quantization and the thickness limit of topological insulator thin films of Sb2Te3, Phys. Rev. Lett. 108(1), 016401 (2012)
https://doi.org/10.1103/PhysRevLett.108.016401
64 T. Hanaguri, K. Igarashi, M. Kawamura, H. Takagi, and T. Sasagawa, Momentum-resolved Landau-level spectroscopy of Dirac surface state in Bi2Se3, Phys. Rev. B 82(8), 081305(R) (2010)
65 W. Bao, Z. Zhao, H. Zhang, G. Liu, P. Kratz, L. Jing, J. Velasco, D. Smirnov, and C. N. Lau, Magnetoconductance oscillations and evidence for fractional quantum Hall states in suspended bilayer and trilayer graphene, Phys. Rev. Lett. 105(24), 246601 (2010)
https://doi.org/10.1103/PhysRevLett.105.246601
66 E. McCann and M. Koshino, The electronic properties of bilayer graphene, Rep. Prog. Phys. 76(5), 056503 (2013)
https://doi.org/10.1088/0034-4885/76/5/056503
67 T. Ohta, A. Bostwick, T. Seyller, K. Horn, and E. Rotenberg, Controlling the Electronic Structure of Bilayer Graphene, Science 313(5789), 951 (2006)
https://doi.org/10.1126/science.1130681
68 Y. Zhang, T. T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, Direct observation of a widely tunable bandgap in bilayer graphene, Nature 459(7248), 820 (2009)
https://doi.org/10.1038/nature08105
69 E. Castro, K. Novoselov, S. Morozov, N. Peres, J. dos Santos, J. Nilsson, F. Guinea, A. Geim, and A. Neto, Biased bilayer graphene: Semiconductor with a gap tunable by the electric field effect, Phys. Rev. Lett. 99(21), 216802 (2007)
https://doi.org/10.1103/PhysRevLett.99.216802
70 G. Li and E. Y. Andrei, Observation of Landau levels of Dirac fermions in graphite, Nat. Phys. 3(9), 623 (2007)
71 Y. Niimi, H. Kambara, and H. Fukuyama, Localized distributions of quasi-two-dimensional electronic States near defects artificially created at graphite surfaces in magnetic fields, Phys. Rev. Lett. 102(2), 026803 (2009)
https://doi.org/10.1103/PhysRevLett.102.026803
72 L. J. Yin, Y. Zhang, J. B. Qiao, S. Y. Li, and L. He, Experimental observation of surface states and Landau levels bending in bilayer graphene, Phys. Rev. B 93(12), 125422 (2016)
https://doi.org/10.1103/PhysRevB.93.125422
73 L. J. Yin, H. Jiang, J. B. Qiao, and L. He, Direct imaging of topological edge states at a bilayer graphene domain wall, Nat. Commun. 7, 11760 (2016)
https://doi.org/10.1038/ncomms11760
74 M. Orlita, C. Faugeras, J. Schneider, G. Martinez, D. Maude, and M. Potemski, Graphite from the viewpoint of Landau level spectroscopy: An effective graphene bilayer and monolayer, Phys. Rev. Lett. 102(16), 166401 (2009)
https://doi.org/10.1103/PhysRevLett.102.166401
75 W. Yan, S. Y. Li, L. J. Yin, J. B. Qiao, J. C. Nie, and L. He, Spatially resolving unconventional interface Landau quantization in a graphene monolayer-bilayer planar junction, Phys. Rev. B 93(19), 195408 (2016)
https://doi.org/10.1103/PhysRevB.93.195408
76 K. K. Bai, Y. C. Wei, J. B. Qiao, S. Y. Li, L. J. Yin, W. Yan, J. C. Nie, and L. He, Detecting giant electronhole asymmetry in a graphene monolayer generated by strain and charged-defect scattering via Landau level spectroscopy, Phys. Rev. B 92(12), 121405 (2015) (R)
https://doi.org/10.1103/PhysRevB.92.121405
77 G. M. Rutter, S. Jung, N. N. Klimov, D. B. Newell, N. B. Zhitenev, and J. A. Stroscio, Microscopic polarization in bilayer graphene, Nat. Phys. 7(8), 649 (2011)
78 Y. Zhang, S. Y. Li, H. Huang, W. T. Li, J. B. Qiao, W. X. Wang, L. J. Yin, K. K. Bai, W. H. Duan, and L. He, Scanning tunneling microscopy of π magnetism of a single atomic vacancy in graphene, Phys. Rev. Lett. 117(16), 166801 (2016)
https://doi.org/10.1103/PhysRevLett.117.166801
79 E. McCann, Asymmetry gap in the electronic band structure of bilayer graphene, Phys. Rev. B 74(16), 161403(R) (2006)
80 K. S. Kim, A. L. Walter, L. Moreschini, T. Seyller, K. Horn, E. Rotenberg, and A. Bostwick, Coexisting massive and massless Dirac fermions in symmetry-broken bilayer graphene, Nat. Mater. 12(10), 887 (2013)
https://doi.org/10.1038/nmat3717
81 J. B. Oostinga, H. B. Heersche, X. Liu, A. F. Morpurgo, and L. M. Vandersypen, Gate-induced insulating state in bilayer graphene devices, Nat. Mater. 7(2), 151 (2008)
https://doi.org/10.1038/nmat2082
82 K. F. Mak, C. H. Lui, J. Shan, and T. F. Heinz, Observation of an electric-field-induced band gap in bilayer graphene by infrared spectroscopy, Phys. Rev. Lett. 102(25), 256405 (2009)
https://doi.org/10.1103/PhysRevLett.102.256405
83 M. P. Lima, A. J. R. da Silva, and A. Fazzio, Splitting of the zero-energy edge states in bilayer graphene, Phys. Rev. B 81(4), 045430 (2010)
https://doi.org/10.1103/PhysRevB.81.045430
84 Y. Zhao, P. Cadden-Zimansky, Z. Jiang, and P. Kim, Symmetry Breaking in the zero-energy Landau level in bilayer graphene, Phys. Rev. Lett. 104(6), 066801 (2010)
https://doi.org/10.1103/PhysRevLett.104.066801
85 M. Nakamura, E. V. Castro, and B. Dóra, Valley symmetry breaking in bilayer graphene: A test of the minimal model, Phys. Rev. Lett. 103(26), 266804 (2009)
https://doi.org/10.1103/PhysRevLett.103.266804
86 K. Shizuya, Pseudo-zero-mode Landau levels and collective excitations in bilayer graphene, Phys. Rev. B 79(16), 165402 (2009)
https://doi.org/10.1103/PhysRevB.79.165402
87 T. Misumi and K. Shizuya, Electromagnetic response and pseudo-zero-mode Landau levels of bilayer graphene in a magnetic field, Phys. Rev. B 77(19), 195423 (2008)
https://doi.org/10.1103/PhysRevB.77.195423
88 S. Y. Zhou, G. H. Gweon, A. V. Fedorov, P. N. First, W. A. de Heer, D. H. Lee, F. Guinea, A. H. Castro Neto, and A. Lanzara, Substrate-induced bandgap opening in epitaxial graphene, Nat. Mater. 6(10), 770 (2007)
https://doi.org/10.1038/nmat2003
89 E. A. Henriksen, D. Nandi, and J. P. Eisenstein, Quantum Hall effect and semimetallic behavior of dual-gated ABA-stacked trilayer graphene, Phys. Rev. X 2(1), 011004 (2012)
https://doi.org/10.1103/PhysRevX.2.011004
90 M. Koshino and E. McCann, Landau level spectra and the quantum Hall effect of multilayer graphene, Phys. Rev. B 83(16), 165443 (2011)
https://doi.org/10.1103/PhysRevB.83.165443
91 W. Bao, L. Jing, J. Velasco, Y. Lee, G. Liu, D. Tran, B. Standley, M. Aykol, S. B. Cronin, D. Smirnov, M. Koshino, E. McCann, M. Bockrath, and C. N. Lau, Stacking-dependent band gap and quantum transport in trilayer graphene, Nat. Phys. 7(12), 948 (2011)
92 S. H. Jhang, M. F. Craciun, S. Schmidmeier, S. Tokumitsu, S. Russo, M. Yamamoto, Y. Skourski, J. Wosnitza, S. Tarucha, J. Eroms, and C. Strunk, Stacking-order dependent transport properties of trilayer graphene, Phys. Rev. B 84(16), 161408(R) (2011)
93 M. F. Craciun, S. Russo, M. Yamamoto, J. B. Oostinga, A. F. Morpurgo, and S. Tarucha, Trilayer graphene is a semimetal with a gate-tunable band overlap, Nat. Nanotechnol. 4(6), 383 (2009)
https://doi.org/10.1038/nnano.2009.89
94 C. H. Lui, Z. Li, K. F. Mak, E. Cappelluti, and T. F. Heinz, Observation of an electrically tunable band gap in trilayer graphene, Nat. Phys. 7(12), 944 (2011)
95 T. Taychatanapat, K. Watanabe, T. Taniguchi, and P. Jarillo-Herrero, Quantum Hall effect and Landau-level crossing of Dirac fermions in trilayer graphene, Nat. Phys. 7(8), 621 (2011)
96 D. Xiao, W. Yao, and Q. Niu, Valley-contrasting physics in graphene: Magnetic moment and topological transport, Phys. Rev. Lett. 99(23), 236809 (2007)
https://doi.org/10.1103/PhysRevLett.99.236809
97 S. Takei, A. Yacoby, B. I. Halperin, and Y. Tserkovnyak, Spin superfluidity in the ν= 0 quantum Hall state of graphene, Phys. Rev. Lett. 116(21), 216801 (2016)
https://doi.org/10.1103/PhysRevLett.116.216801
98 N. Tombros, C. Jozsa, M. Popinciuc, H. T. Jonkman, and B. J. van Wees, Electronic spin transport and spin precession in single graphene layers at room temperature, Nature 448(7153), 571 (2007)
https://doi.org/10.1038/nature06037
99 S. Morozov, K. Novoselov, M. Katsnelson, F. Schedin, D. Elias, J. Jaszczak, and A. Geim, Giant intrinsic carrier mobilities in graphene and its bilayer, Phys. Rev. Lett. 100(1), 016602 (2008)
https://doi.org/10.1103/PhysRevLett.100.016602
100 A. F. Young, C. R. Dean, L. Wang, H. Ren, P. Cadden-Zimansky, K. Watanabe, T. Taniguchi, J. Hone, K. L. Shepard, and P. Kim, Spin and valley quantum Hall ferromagnetism in graphene, Nat. Phys. 8(7), 550 (2012)
101 J. Mao, Y. Jiang, D. Moldovan, G. Li, K. Watanabe, T. Taniguchi, M. R. Masir, F. M. Peeters, and E. Y. Andrei, Realization of a tunable artificial atom at a supercritically charged vacancy in graphene, Nat. Phys. 12(6), 545 (2016)
102 Y. S. Fu, M. Kawamura, K. Igarashi, H. Takagi, T. Hanaguri, and T. Sasagawa, Imaging the twocomponent nature of Dirac–Landau levels in the topological surface state of Bi2Se3, Nat. Phys. 10(11), 815 (2014)
103 H. Min, J. E. Hill, N. A. Sinitsyn, B. R. Sahu, L. Kleinman, and A. H. MacDonald, Intrinsic and Rashba spin-orbit interactions in graphene sheets, Phys. Rev. B 74(16), 165310 (2006)
https://doi.org/10.1103/PhysRevB.74.165310
104 G. Li, A. Luican-Mayer, D. Abanin, L. Levitov, and E. Y. Andrei, Evolution of Landau levels into edge states in graphene, Nat. Commun. 4, 1744 (2013)
https://doi.org/10.1038/ncomms2767
105 R. V. Gorbachev, J. C. W. Song, G. L. Yu, A. V. Kretinin, F. Withers, Y. Cao, A. Mishchenko, I. V. Grigorieva, K. S. Novoselov, L. S. Levitov, and A. K. Geim, Detecting topological currents in graphene superlattices, Science 346(6208), 448 (2014)
https://doi.org/10.1126/science.1254966
106 M. Koshino and T. Ando, Anomalous orbital magnetism in Dirac-electron systems: Role of pseudospin paramagnetism, Phys. Rev. B 81(19), 195431 (2010)
https://doi.org/10.1103/PhysRevB.81.195431
107 J. L. Lado, J. W. González, and J. Fernández-Rossier, Quantum Hall effect in gapped graphene heterojunctions, Phys. Rev. B 88(3), 035448 (2013)
https://doi.org/10.1103/PhysRevB.88.035448
108 W. X. Wang, L. J. Yin, J. B. Qiao, T. Cai, S. Y. Li, R. F. Dou, J. C. Nie, X. Wu, and L. He, Atomic resolution imaging of the two-component Dirac-Landau levels in a gapped graphene monolayer, Phys. Rev. B 92(16), 165420 (2015)
https://doi.org/10.1103/PhysRevB.92.165420
109 V. P. Gusynin, V. A. Miransky, S. G. Sharapov, and I. A. Shovkovy, Edge states in quantum Hall effect in graphene, Low Temp. Phys. 34(10), 778 (2008)
https://doi.org/10.1063/1.2981387
110 M. T. Allen, O. Shtanko, I. C. Fulga, A. R. Akhmerov, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, L. S. Levitov, and A. Yacoby, Spatially resolved edge currents and guided-wave electronic states in graphene, Nat. Phys. 2(12), 128 (2016)
111 D. A. Abanin, K. S. Novoselov, U. Zeitler, P. A. Lee, A. K. Geim, and L. S. Levitov, Dissipative quantum Hall effect in graphene near the Dirac point, Phys. Rev. Lett. 98(19), 196806 (2007)
https://doi.org/10.1103/PhysRevLett.98.196806
112 D. A. Abanin, P. A. Lee, and L. S. Levitov, Spin-filtered edge states and quantum Hall effect in graphene, Phys. Rev. Lett. 96(17), 176803 (2006)
https://doi.org/10.1103/PhysRevLett.96.176803
113 H. A. Fertig and L. Brey, Luttinger liquid at the edge of undoped graphene in a strong magnetic field, Phys. Rev. Lett. 97(11), 116805 (2006)
https://doi.org/10.1103/PhysRevLett.97.116805
114 A. F. Young, J. D. Sanchez-Yamagishi, B. Hunt, S. H. Choi, K. Watanabe, T. Taniguchi, R. C. Ashoori, and P. Jarillo-Herrero, Tunable symmetry breaking and helical edge transport in a graphene quantum spin Hall state, Nature 505(7484), 528 (2014)
https://doi.org/10.1038/nature12800
115 P. Maher, C. R. Dean, A. F. Young, T. Taniguchi, K. Watanabe, K. L. Shepard, J. Hone, and P. Kim, Evidence for a spin phase transition at charge neutrality in bilayer graphene, Nat. Phys. 9(3), 154 (2013)
116 K. Lee, B. Fallahazad, J. Xue, D. C. Dillen, K. Kim, T. Taniguchi, K. Watanabe, and E. Tutuc, Chemical potential and quantum Hall ferromagnetism in bilayer graphene, Science 345(6192), 58 (2014)
https://doi.org/10.1126/science.1251003
117 M. Kharitonov, Canted antiferromagnetic phase of the ν= 0 quantum Hall state in bilayer graphene, Phys. Rev. Lett. 109(4), 046803 (2012)
https://doi.org/10.1103/PhysRevLett.109.046803
118 K. Nomura and A. H. MacDonald, Quantum Hall ferromagnetism in graphene, Phys. Rev. Lett. 96(25), 256602 (2006)
https://doi.org/10.1103/PhysRevLett.96.256602
119 H. Ito, K. Furuya, Y. Shibata, S. Kashiwaya, M. Yamaguchi, T. Akazaki, H. Tamura, Y. Ootuka, and S. Nomura, Near-field optical mapping of quantum Hall edge states, Phys. Rev. Lett. 107(25), 256803 (2011)
https://doi.org/10.1103/PhysRevLett.107.256803
120 K. Lai, W. Kundhikanjana, M. A. Kelly, Z. X. Shen, J. Shabani, and M. Shayegan, Imaging of coulomb-driven quantum Hall edge states, Phys. Rev. Lett. 107(17), 176809 (2011)
https://doi.org/10.1103/PhysRevLett.107.176809
121 J. Tian, Y. Jiang, I. Childres, H. Cao, J. Hu, and Y. P. Chen, Quantum Hall effect in monolayer-bilayer graphene planar junctions, Phys. Rev. B 88(12), 125410 (2013)
https://doi.org/10.1103/PhysRevB.88.125410
122 Y. Kobayashi, K. i. Fukui, T. Enoki, and K. Kusakabe, Edge state on hydrogen-terminated graphite edges investigated by scanning tunneling microscopy, Phys. Rev. B 73(12), 125415 (2006)
https://doi.org/10.1103/PhysRevB.73.125415
123 Y. Kobayashi, K. i. Fukui, T. Enoki, K. Kusakabe, and Y. Kaburagi, Observation of zigzag and armchair edges of graphite using scanning tunneling microscopy and spectroscopy, Phys. Rev. B 71(19), 193406 (2005)
https://doi.org/10.1103/PhysRevB.71.193406
124 K. A. Ritter and J. W. Lyding, The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons, Nat. Mater. 8(3), 235 (2009)
https://doi.org/10.1038/nmat2378
125 C. Tao, L. Jiao, O. V. Yazyev, Y. C. Chen, J. Feng, X. Zhang, R. B. Capaz, J. M. Tour, A. Zettl, S. G. Louie, H. Dai, and M. F. Crommie, Spatially resolving edge states of chiral graphene nanoribbons, Nat. Phys. 7(8), 616 (2011)
126 J. Xue, J. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, and B. J. LeRoy, Longwavelength local density of states oscillations near graphene step edges, Phys. Rev. Lett. 108(1), 016801 (2012)
https://doi.org/10.1103/PhysRevLett.108.016801
127 Y. Niimi, T. Matsui, H. Kambara, K. Tagami, M. Tsukada, and H. Fukuyama, Scanning tunneling microscopy and spectroscopy of the electronic local density of states of graphite surfaces near monoatomic step edges, Phys. Rev. B 73(8), 085421 (2006)
https://doi.org/10.1103/PhysRevB.73.085421
128 Y. Y. Li, M. X. Chen, M. Weinert, and L. Li, Direct experimental determination of onset of electron-electron interactions in gap opening of zigzag graphene nanoribbons, Nat. Commun. 5, 4311 (2014)
https://doi.org/10.1038/ncomms5311
129 E. Castro, N. Peres, J. Lopes dos Santos, A. Neto, and F. Guinea, Localized States at Zigzag Edges of Bilayer Graphene, Phys. Rev. Lett. 100(2), 026802 (2008)
https://doi.org/10.1103/PhysRevLett.100.026802
130 E. V. Castro, N. M. R. Peres, and J. M. B. Lopes dos Santos, Localized states at zigzag edges of multilayer graphene and graphite steps, Europhys. Lett. 84(1), 17001 (2008)
https://doi.org/10.1209/0295-5075/84/17001
131 T. Wassmann, A. Seitsonen, A. Saitta, M. Lazzeri, and F. Mauri, Structure, stability, edge states, and aromaticity of graphene ribbons, Phys. Rev. Lett. 101(9), 096402 (2008)
https://doi.org/10.1103/PhysRevLett.101.096402
132 E. V. Castro, M. P. López-Sancho, and M. A. H. Vozmediano, New type of vacancy-induced localized states in multilayer graphene, Phys. Rev. Lett. 104(3), 036802 (2010)
https://doi.org/10.1103/PhysRevLett.104.036802
133 M. Han, B. Özyilmaz, Y. Zhang, and P. Kim, Energy band-gap engineering of graphene nanoribbons, Phys. Rev. Lett. 98(20), 206805 (2007)
https://doi.org/10.1103/PhysRevLett.98.206805
134 Y. W. Son, M. L. Cohen, and S. G. Louie, Half-metallic graphene nanoribbons, Nature 444(7117), 347 (2006)
https://doi.org/10.1038/nature05180
135 G. Z. Magda, X. Jin, I. Hagymasi, P. Vancso, Z. Osvath, P. Nemes-Incze, C. Hwang, L. P. Biro, and L. Tapaszto, Room-temperature magnetic order on zigzag edges of narrow graphene nanoribbons, Nature 514(7524), 608 (2014)
https://doi.org/10.1038/nature13831
136 D. A. Abanin, P. A. Lee, and L. S. Levitov, Charge and spin transport at the quantum Hall edge of graphene, Solid State Commun. 143(1–2), 77 (2007)
https://doi.org/10.1016/j.ssc.2007.04.024
137 L. Brey and H. A. Fertig, Edge states and the quantized Hall effect in graphene, Phys. Rev. B 73(19), 195408 (2006)
https://doi.org/10.1103/PhysRevB.73.195408
138 V. Mazo, E. Shimshoni, and H. A. Fertig, Edge states of bilayer graphene in the quantum Hall regime, Phys. Rev. B 84(4), 045405 (2011)
https://doi.org/10.1103/PhysRevB.84.045405
139 D. B. Chklovskii, B. I. Shklovskii, and L. I. Glazman, Electrostatics of edge channels, Phys. Rev. B 46(7), 4026 (1992)
https://doi.org/10.1103/PhysRevB.46.4026
140 C. Cong, T. Yu, K. Sato, J. Shang, R. Saito, G. F. Dresselhaus, and M. S. Dresselhaus, Raman characterization of ABA- and ABC-stacked trilayer graphene, ACS Nano 5(11), 8760 (2011)
https://doi.org/10.1021/nn203472f
141 C. H. Lui, Z. Li, Z. Chen, P. V. Klimov, L. E. Brus, and T. F. Heinz, Imaging stacking order in few-layer graphene, Nano Lett. 11(1), 164 (2011)
https://doi.org/10.1021/nl1032827
142 L. J. Yin, J. B. Qiao, and L. He, Structures and electronic properties of twisted bilayer graphene, Progress in Physics 36(3), 65 (2016) (in Chinese)
143 C. Park, J. Ryou, S. Hong, B. G. Sumpter, G. Kim, and M. Yoon, Electronic properties of bilayer graphene strongly coupled to interlayer stacking and an external electric field, Phys. Rev. Lett. 115(1), 015502 (2015)
https://doi.org/10.1103/PhysRevLett.115.015502
144 J. Yin, H. Wang, H. Peng, Z. Tan, L. Liao, L. Lin, X. Sun, A. L. Koh, Y. Chen, H. Peng, and Z. Liu, Selectively enhanced photocurrent generation in twisted bilayer graphene with van Hove singularity, Nat. Commun. 7, 10699 (2016)
https://doi.org/10.1038/ncomms10699
145 W. Y. He, Y. Su, M. Yang, and L. He, Creating in-plane pseudomagnetic fields in excess of 1000 T by misoriented stacking in a graphene bilayer, Phys. Rev. B 89(12), 125418 (2014)
https://doi.org/10.1103/PhysRevB.89.125418
146 B. Butz, C. Dolle, F. Niekiel, K. Weber, D. Waldmann, H. B. Weber, B. Meyer, and E. Spiecker, Dislocations in bilayer graphene, Nature 505(7484), 533 (2014)
https://doi.org/10.1038/nature12780
147 J. S. Alden, A. W. Tsen, P. Y. Huang, R. Hovden, L. Brown, J. Park, D. A. Muller, and P. L. McEuen, Strain solitons and topological defects in bilayer graphene, Proc. Natl. Acad. Sci. USA 110(28), 11256 (2013)
https://doi.org/10.1073/pnas.1309394110
148 J. Lin, W. Fang, W. Zhou, A. R. Lupini, J. C. Idrobo, J. Kong, S. J. Pennycook, and S. T. Pantelides, AC/AB stacking boundaries in bilayer graphene, Nano Lett. 13(7), 3262 (2013)
https://doi.org/10.1021/nl4013979
149 M. Koshino, Electronic transmission through AB-BA domain boundary in bilayer graphene, Phys. Rev. B 88(11), 115409 (2013)
https://doi.org/10.1103/PhysRevB.88.115409
150 L. J. Yin, W. X. Wang, Y. Zhang, Y. Y. Ou, H. T. Zhang, C. Y. Shen, and L. He, Observation of chirality transition of quasiparticles at stacking solitons in trilayer graphene, Phys. Rev. B 95(8), 081402(R) (2017)
151 L. Jiang, Z. Shi, B. Zeng, S. Wang, J. H. Kang, T. Joshi, C. Jin, L. Ju, J. Kim, T. Lyu, Y. R. Shen, M. Crommie, H. J. Gao, and F. Wang, Soliton-dependent plasmon reflection at bilayer graphene domain walls, Nat. Mater. 15(8), 840 (2016)
https://doi.org/10.1038/nmat4653
152 F. Zhang, A. H. MacDonald, and E. J. Mele, Valley Chern numbers and boundary modes in gapped bilayer graphene, Proc. Natl. Acad. Sci. USA 110(26), 10546 (2013)
https://doi.org/10.1073/pnas.1308853110
153 A. Vaezi, Y. Liang, D. H. Ngai, L. Yang, and E. A. Kim, Topological edge states at a tilt boundary in gated multilayer graphene, Phys. Rev. X 3(2), 021018 (2013)
https://doi.org/10.1103/PhysRevX.3.021018
154 J. Jung, F. Zhang, Z. Qiao, and A. H. MacDonald, Valley-Hall kink and edge states in multilayer graphene, Phys. Rev. B 84(7), 075418 (2011)
https://doi.org/10.1103/PhysRevB.84.075418
155 L. Ju, Z. Shi, N. Nair, Y. Lv, C. Jin, C. Velasco, H. A. Ojeda-Aristizabal, M. C. Bechtel, A. Martin, J. Zettl, Analytis, and F. Wang, Topological valley transport at bilayer graphene domain walls, Nature 520(7549), 650 (2015)
https://doi.org/10.1038/nature14364
156 P. San-Jose, R. V. Gorbachev, A. K. Geim, K. S. Novoselov, and F. Guinea, Stacking boundaries and transport in bilayer graphene, Nano Lett. 14(4), 2052 (2014)
https://doi.org/10.1021/nl500230a
157 D. Pierucci, H. Sediri, M. Hajlaoui, J. C. Girard, T. Brumme, M. Calandra, E. Velez-Fort, G. Patriarche, M. G. Silly, G. Ferro, V. Soulière, M. Marangolo, F. Sirotti, F. Mauri, and A. Ouerghi, evidence for flat bands near the Fermi level in epitaxial rhombohedral multilayer graphene, ACS Nano 9(5), 5432 (2015)
https://doi.org/10.1021/acsnano.5b01239
158 P. Xu, Y. Yang, D. Qi, S. D. Barber, M. L. Ackerman, J. K. Schoelz, T. B. Bothwell, S. Barraza-Lopez, L. Bellaiche, and P. M. Thibado, A pathway between Bernal and rhombohedral stacked graphene layers with scanning tunneling microscopy, Appl. Phys. Lett. 100(20), 201601 (2012)
https://doi.org/10.1063/1.4716475
159 I. Martin, Y. Blanter, and A. Morpurgo, Topological confinement in bilayer graphene, Phys. Rev. Lett. 100(3), 036804 (2008)
https://doi.org/10.1103/PhysRevLett.100.036804
160 M. Zarenia, J. M. Pereira, G. A. Farias, and F. M. Peeters, Chiral states in bilayer graphene: Magnetic field dependence and gap opening, Phys. Rev. B 84(12), 125451 (2011)
https://doi.org/10.1103/PhysRevB.84.125451
161 W. Yao, S. Yang, and Q. Niu, Edge states in graphene: From gapped flat-band to gapless chiral modes, Phys. Rev. Lett. 102(9), 096801 (2009)
https://doi.org/10.1103/PhysRevLett.102.096801
162 L. Zhang, Y. Zhang, J. Camacho, M. Khodas, and I. Zaliznyak, The experimental observation of quantum Hall effect of l= 3 chiral quasiparticles in trilayer graphene, Nat. Phys. 7(12), 953 (2011)
163 S. Yuan, R. Roldán, and M. I. Katsnelson, Landau level spectrum of ABA- and ABC-stacked trilayer graphene, Phys. Rev. B 84(12), 125455 (2011)
https://doi.org/10.1103/PhysRevB.84.125455
164 M. G. Menezes, R. B. Capaz, and S. G. Louie, Ab initio quasiparticle band structure of ABA- and ABC-stacked graphene trilayers, Phys. Rev. B 89(3), 035431 (2014)
https://doi.org/10.1103/PhysRevB.89.035431
165 F. Zhang, B. Sahu, H. Min, and A. H. MacDonald, Band structure of ABC-stacked graphene trilayers, Phys. Rev. B 82(3), 035409 (2010)
https://doi.org/10.1103/PhysRevB.82.035409
166 Y. Barlas, R. Cote, and M. Rondeau, Quantum Hall to charge-density-wave phase transitions in ABC-trilayer graphene, Phys. Rev. Lett. 109(12), 126804 (2012)
https://doi.org/10.1103/PhysRevLett.109.126804
167 R. Côté, M. Rondeau, A. M. Gagnon, and Y. Barlas, Phase diagram of insulating crystal and quantum Hall states in ABC-stacked trilayer graphene, Phys. Rev. B 86(12), 125422 (2012)
https://doi.org/10.1103/PhysRevB.86.125422
168 R. Xu, L. J. Yin, J. B. Qiao, K. K. Bai, J. C. Nie, and L. He, Direct probing of the stacking order and electronic spectrum of rhombohedral trilayer graphene with scanning tunneling microscopy, Phys. Rev. B 91(3), 035410 (2015)
https://doi.org/10.1103/PhysRevB.91.035410
169 S. H. R. Sena, J. M. Pereira, F. M. Peeters, and G. A. Farias, Landau levels in asymmetric graphene trilayers, Phys. Rev. B 84(20), 205448 (2011)
https://doi.org/10.1103/PhysRevB.84.205448
170 M. Koshino and E. McCann, Trigonal warping and Berry’s phase Nπ in ABC-stacked multilayer graphene, Phys. Rev. B 80(16), 165409 (2009)
https://doi.org/10.1103/PhysRevB.80.165409
171 F. Guinea, A. Castro Neto, and N. Peres, Electronic states and Landau levels in graphene stacks, Phys. Rev. B 73(24), 245426 (2006)
https://doi.org/10.1103/PhysRevB.73.245426
172 J. Jung and A. H. MacDonald, Gapped broken symmetry states in ABC-stacked trilayer graphene, Phys. Rev. B 88(7), 075408 (2013)
https://doi.org/10.1103/PhysRevB.88.075408
173 F. Zhang, D. Tilahun, and A. H. MacDonald, Hund’s rules for the N= 0 Landau levels of trilayer graphene, Phys. Rev. B 85(16), 165139 (2012)
https://doi.org/10.1103/PhysRevB.85.165139
174 R. Bistritzer and A. H. MacDonald, Moiré butterflies in twisted bilayer graphene, Phys. Rev. B 84(3), 035440 (2011)
https://doi.org/10.1103/PhysRevB.84.035440
175 E. J. Mele, Commensuration and interlayer coherence in twisted bilayer graphene, Phys. Rev. B 81(16), 161405(R) (2010)
176 P. Moon and M. Koshino, Energy spectrum and quantum Hall effect in twisted bilayer graphene, Phys. Rev. B 85(19), 195458 (2012)
https://doi.org/10.1103/PhysRevB.85.195458
177 L. Wang, Y. Gao, B. Wen, Z. Han, T. Taniguchi, K. Watanabe, M. Koshino, J. Hone, and C. R. Dean, Evidence for a fractional fractal quantum Hall effect in graphene superlattices, Science 350(6265), 1231 (2015)
https://doi.org/10.1126/science.aad2102
178 G. Li, A. Luican, J. M. B. Lopes dos Santos, A. H. Castro Neto, A. Reina, J. Kong, and E. Y. Andrei, Observation of Van Hove singularities in twisted graphene layers, Nat. Phys.6(2), 109 (2009)
179 W. Yan, M. Liu, R. F. Dou, L. Meng, L. Feng, Z. D. Chu, Y. Zhang, Z. Liu, J. C. Nie, and L. He, Angledependent van Hove singularities in a slightly twisted graphene bilayer, Phys. Rev. Lett. 109(12), 126801 (2012)
https://doi.org/10.1103/PhysRevLett.109.126801
180 I. Brihuega, P. Mallet, H. González-Herrero, G. Trambly de Laissardière, M. M. Ugeda, L. Magaud, J. M. Gómez-Rodríguez, F. Ynduráin, and J. Y. Veuillen, Unraveling the intrinsic and robust nature of van Hove singularities in twisted bilayer graphene by scanning tunneling microscopy and theoretical analysis, Phys. Rev. Lett. 109(19), 196802 (2012)
https://doi.org/10.1103/PhysRevLett.109.196802
181 W. Yan, L. Meng, M. Liu, J. B. Qiao, Z. D. Chu, R. F. Dou, Z. Liu, J. C. Nie, D. G. Naugle, and L. He, Angledependent van Hove singularities and their breakdown in twisted graphene bilayers, Phys. Rev. B 90(7), 115402 (2014)
https://doi.org/10.1103/PhysRevB.90.115402
182 L. J. Yin, J. B. Qiao, W. X. Wang, W. J. Zuo, W. Yan, R. Xu, R. F. Dou, J. C. Nie, and L. He, Landau quantization and Fermi velocity renormalization in twisted graphene bilayers, Phys. Rev. B 92(20), 201408(R) (2015)
183 A. Luican, G. Li, A. Reina, J. Kong, R. R. Nair, K. S. Novoselov, A. K. Geim, and E. Y. Andrei, Single-layer behavior and its breakdown in twisted graphene layers, Phys. Rev. Lett. 106(12), 126802 (2011)
https://doi.org/10.1103/PhysRevLett.106.126802
184 L. J. Yin, J. B. Qiao, W. J. Zuo, W. T. Li, and L. He, Experimental evidence for non-Abelian gauge potentials in twisted graphene bilayers, Phys. Rev. B 92(8), 081406(R) (2015)
185 P. San-Jose, J. González, and F. Guinea, Non-Abelian gauge potentials in graphene bilayers, Phys. Rev. Lett. 108(21), 216802 (2012)
https://doi.org/10.1103/PhysRevLett.108.216802
186 E. Suárez Morell, J. D. Correa, P. Vargas, M. Pacheco, and Z. Barticevic, Flat bands in slightly twisted bilayer graphene: Tight-binding calculations, Phys. Rev. B 82(12), 121407 (2010)
https://doi.org/10.1103/PhysRevB.82.121407
187 G. Trambly de Laissardière, D. Mayou, and L. Magaud, Localization of Dirac electrons in rotated graphene bilayers, Nano Lett. 10(3), 804 (2010)
https://doi.org/10.1021/nl902948m
188 R. Bistritzer, and A. H. MacDonald, Moire bands in twisted double-layer graphene, Proc. Natl. Acad. Sci. USA 108(30), 12233 (2011)
https://doi.org/10.1073/pnas.1108174108
189 J. M. B. Lopes dos Santos, N. M. R. Peres, and A. H. Castro Neto, Graphene bilayer with a twist: Electronic structure, Phys. Rev. Lett. 99(25), 256802 (2007)
https://doi.org/10.1103/PhysRevLett.99.256802
190 J. M. B. Lopes dos Santos, N. M. R. Peres, and A. H. Castro Neto, Continuum model of the twisted graphene bilayer, Phys. Rev. B 86(15), 155449 (2012)
https://doi.org/10.1103/PhysRevB.86.155449
191 A. O. Sboychakov, A. L. Rakhmanov, A. V. Rozhkov, and F. Nori, Electronic spectrum of twisted bilayer graphene, Phys. Rev. B 92(7), 075402 (2015)
https://doi.org/10.1103/PhysRevB.92.075402
192 Z. D. Chu, W. Y. He, and L. He, Coexistence of van Hove singularities and superlattice Dirac points in a slightly twisted graphene bilayer, Phys. Rev. B 87(15), 155419 (2013)
https://doi.org/10.1103/PhysRevB.87.155419
193 D. Wong, Y. Wang, J. Jung, S. Pezzini, A. M. DaSilva, H. Z. Tsai, H. S. Jung, R. Khajeh, Y. Kim, J. Lee, S. Kahn, S. Tollabimazraehno, H. Rasool, K. Watanabe, T. Taniguchi, A. Zettl, S. Adam, A. H. MacDonald, and M. F. Crommie, Local spectroscopy of moiré induced electronic structure in gate-tunable twisted bilayer graphene, Phys. Rev. B 92(15), 155409 (2015)
https://doi.org/10.1103/PhysRevB.92.155409
194 B. Cheng, Y. Wu, P. Wang, C. Pan, T. Taniguchi, K. Watanabe, and M. Bockrath, Gate-tunable Landau level filling and spectroscopy in coupled massive and massless electron systems, Phys. Rev. Lett. 117(2), 026601 (2016)
https://doi.org/10.1103/PhysRevLett.117.026601
195 J. B. Qiao, and L. He, In-plane chiral tunneling and outof- plane valley-polarized quantum tunneling in twisted graphene trilayer, Phys. Rev. B 90(7), 075410 (2014)
https://doi.org/10.1103/PhysRevB.90.075410
196 L. J. Yin, J. B. Qiao, W. X. Wang, Z. D. Chu, K. F. Zhang, R. F. Dou, C. L. Gao, J. F. Jia, J. C. Nie, and L. He, Tuning structures and electronic spectra of graphene layers with tilt grain boundaries, Phys. Rev. B 89(20), 205410 (2014)
https://doi.org/10.1103/PhysRevB.89.205410
197 L. J. Yin, J. B. Qiao, W. Yan, R. Xu, R. F. Dou, J. C. Nie, and L. He, Electronic structures and their Landau quantizations in twisted graphene bilayer and trilayer, arXiv: 1410.1621 (2014)
198 K. K. Bai, Y. Zhou, H. Zheng, L. Meng, H. Peng, Z. Liu, J. C. Nie, and L. He, Creating one-dimensional nanoscale periodic ripples in a continuous mosaic graphene monolayer, Phys. Rev. Lett. 113(8), 086102 (2014)
https://doi.org/10.1103/PhysRevLett.113.086102
199 W. Yan, W. Y. He, Z. D. Chu, M. Liu, L. Meng, R. F. Dou, Y. Zhang, Z. Liu, J. C. Nie, and L. He, Strain and curvature induced evolution of electronic band structures in twisted graphene bilayer, Nat. Commun. 4, 2159 (2013)
https://doi.org/10.1038/ncomms3159
200 H. Yan, C. C. Liu, K. K. Bai, X. Wang, M. Liu, W. Yan, L. Meng, Y. Zhang, Z. Liu, R. Dou, J. C. Nie, Y. Yao, and L. He, Electronic structures of graphene layers on a metal foil: The effect of atomic-scale defects, Appl. Phys. Lett. 103(14), 143120 (2013)
https://doi.org/10.1063/1.4824206
201 S. Jung, G. M. Rutter, N. N. Klimov, D. B. Newell, I. Calizo, A. R. Hight-Walker, N. B. Zhitenev, and J. A. Stroscio, Evolution of microscopic localization in graphene in a magnetic field from scattering resonances to quantum dots, Nat. Phys. 7(3), 245 (2011)
202 Y. Zhang, V. W. Brar, C. Girit, A. Zettl, and M. F. Crommie, Origin of spatial charge inhomogeneity in graphene, Nat. Phys. 5, 722 (2009)
203 H. Yan, Y. Sun, L. He, J. C. Nie, and M. H. W. Chan, Observation of Landau-level-like quantization at 77 K along a strained-induced graphene ridge, Phys. Rev. B 85(3), 035422 (2012)
https://doi.org/10.1103/PhysRevB.85.035422
204 N. Levy, S. A. Burke, K. L. Meaker, M. Panlasigui, A. Zettl, F. Guinea, A. H. Castro Neto, and M. F. Crommie, Strain-induced pseudo-magnetic fields greater than 300 Tesla in graphene nanobubbles, Science 329(5991), 544 (2010)
https://doi.org/10.1126/science.1191700
205 L. Meng, W. Y. He, H. Zheng, M. Liu, H. Yan, W. Yan, Z. D. Chu, K. Bai, R. F. Dou, Y. Zhang, Z. Liu, J. C. Nie, and L. He, Strain-induced one-dimensional Landau level quantization in corrugated graphene, Phys. Rev. B 87(20), 205405 (2013)
https://doi.org/10.1103/PhysRevB.87.205405
206 J. H. Chen, C. Jang, S. Adam, M. S. Fuhrer, E. D. Williams, and M. Ishigami, Charged-impurity scattering in graphene, Nat. Phys. 4(5), 377 (2008)
207 J. R. Williams, T. Low, M. S. Lundstrom, and C. M. Marcus, Gate-controlled guiding of electrons in graphene, Nat. Nanotechnol. 6(4), 222 (2011)
https://doi.org/10.1038/nnano.2011.3
208 Y. Wang, V. W. Brar, A. V. Shytov, Q. Wu, W. Regan, H. Z. Tsai, A. Zettl, L. S. Levitov, and M. F. Crommie, Mapping Dirac quasiparticles near a single Coulomb impurity on graphene, Nat. Phys. 8(9), 653 (2012)
209 M. Kühne, C. Faugeras, P. Kossacki, A. A. L. Nicolet, M. Orlita, Y. I. Latyshev, and M. Potemski, Polarization-resolved magneto-Raman scattering of graphenelike domains on natural graphite, Phys. Rev. B 85(19), 195406 (2012)
https://doi.org/10.1103/PhysRevB.85.195406
210 A. Kretinin, G. L. Yu, R. Jalil, Y. Cao, F. Withers, A. Mishchenko, M. I. Katsnelson, K. S. Novoselov, A. K. Geim, and F. Guinea, Quantum capacitance measurements of electron–hole asymmetry and next-nearestneighbor hopping in graphene, Phys. Rev. B 88(16), 165427 (2013)
https://doi.org/10.1103/PhysRevB.88.165427
211 V. M. Pereira, J. Nilsson, and A. H. Castro Neto, Coulomb impurity problem in graphene, Phys. Rev. Lett. 99(16), 166802 (2007)
https://doi.org/10.1103/PhysRevLett.99.166802
212 D. S. Novikov, Elastic scattering theory and transport in graphene, Phys. Rev. B 76(24), 245435 (2007)
https://doi.org/10.1103/PhysRevB.76.245435
213 D. S. Novikov, Numbers of donors and acceptors from transport measurements in graphene, Appl. Phys. Lett. 91(10), 102102 (2007)
https://doi.org/10.1063/1.2779107
214 S. Y. Li, K. K. Bai, L. J. Yin, J. B. Qiao, W. X. Wang, and L. He, Observation of unconventional splitting of Landau levels in strained graphene, Phys. Rev. B 92(24), 245302 (2015)
https://doi.org/10.1103/PhysRevB.92.245302
215 F. de Juan, A. Cortijo, M. A. H. Vozmediano, and A. Cano, Aharonov–Bohm interferences from local deformations in graphene, Nat. Phys. 7(10), 810 (2011)
216 M. A. H. Vozmediano, M. I. Katsnelson, and F. Guinea, Gauge fields in graphene, Phys. Rep. 496(4–5), 109 (2010)
https://doi.org/10.1016/j.physrep.2010.07.003
217 B. Uchoa, and Y. Barlas, Superconducting states in pseudo-Landau-levels of strained graphene, Phys. Rev. Lett. 111(4), 046604 (2013)
https://doi.org/10.1103/PhysRevLett.111.046604
218 B. Roy, Z. X. Hu, and K. Yang, Theory of unconventional quantum Hall effect in strained graphene, Phys. Rev. B 87(12), 121408(R) (2013)
219 D. A. Abanin and D. A. Pesin, Interaction-induced topological insulator states in strained graphene, Phys. Rev. Lett. 109(6), 066802 (2012)
https://doi.org/10.1103/PhysRevLett.109.066802
220 B. Roy, Odd integer quantum Hall effect in graphene, Phys. Rev. B 84(3), 035458 (2011)
https://doi.org/10.1103/PhysRevB.84.035458
221 D. B. Zhang, G. Seifert, and K. Chang, Strain-induced pseudomagnetic fields in twisted graphene nanoribbons, Phys. Rev. Lett. 112(9), 096805 (2014)
https://doi.org/10.1103/PhysRevLett.112.096805
222 L. Tapasztó, T. Dumitricǎ, S. J. Kim, P. Nemes-Incze, C. Hwang, and L. P. Biró, Breakdown of continuum mechanics for nanometre-wavelength rippling of graphene, Nat. Phys. 8(10), 739 (2012)
223 F. Guinea, M. Katsnelson, and M. Vozmediano, Midgap states and charge inhomogeneities in corrugated graphene, Phys. Rev. B 77(7), 075422 (2008)
https://doi.org/10.1103/PhysRevB.77.075422
224 T. O. Wehling, A. V. Balatsky, A. M. Tsvelik, M. I. Katsnelson, and A. I. Lichtenstein, Midgap states in corrugated graphene: Ab initio calculations and effective field theory, EPL (Europhysics Letters) 84(1), 17003 (2008)
https://doi.org/10.1209/0295-5075/84/17003
225 F. Guinea, M. I. Katsnelson, and A. K. Geim, Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering, Nat. Phys. 6(1), 30 (2010)
226 Y. Jiang, T. Low, K. Chang, M. I. Katsnelson, and F. Guinea, Generation of pure bulk valley current in graphene, Phys. Rev. Lett. 110(4), 046601 (2013)
https://doi.org/10.1103/PhysRevLett.110.046601
227 Z. Wu, F. Zhai, F. M. Peeters, H. Q. Xu, and K. Chang, Valley-dependent Brewster angles and Goos–Hanchen effect in strained graphene, Phys. Rev. Lett. 106(17), 176802 (2011)
https://doi.org/10.1103/PhysRevLett.106.176802
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed