Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2017, Vol. 12 Issue (3): 128904   https://doi.org/10.1007/s11467-017-0656-z
  本期目录
Diversity of chimera-like patterns from a model of 2D arrays of neurons with nonlocal coupling
Chang-Hai Tian1,2, Xi-Yun Zhang1, Zhen-Hua Wang1, Zong-Hua Liu1()
1. Department of Physics, East China Normal University, Shanghai 200062, China
2. School of Data Science, Tongren University, Tongren 554300, China
 全文: PDF(1537 KB)  
Abstract

Chimera states have been studied in 1D arrays, and a variety of different chimera states have been found using different models. Research has recently been extended to 2D arrays but only to phase models of them. Here, we extend it to a nonphase model of 2D arrays of neurons and focus on the influence of nonlocal coupling. Using extensive numerical simulations, we find, surprisingly, that this system can show most types of previously observed chimera states, in contrast to previous models, where only one or a few types of chimera states can be observed in each model. We also find that this model can show some special chimera-like patterns such as gridding and multicolumn patterns, which were previously observed only in phase models. Further, we present an effective approach, i.e., removing some of the coupling links, to generate heterogeneous coupling, which results in diverse chimera-like patterns and even induces transformations from one chimera-like pattern to another.

Key wordschimera state    FitzHugh–Nagumo model    heterogeneous couplings
收稿日期: 2016-10-19      出版日期: 2017-03-17
Corresponding Author(s): Zong-Hua Liu   
 引用本文:   
. [J]. Frontiers of Physics, 2017, 12(3): 128904.
Chang-Hai Tian, Xi-Yun Zhang, Zhen-Hua Wang, Zong-Hua Liu. Diversity of chimera-like patterns from a model of 2D arrays of neurons with nonlocal coupling. Front. Phys. , 2017, 12(3): 128904.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-017-0656-z
https://academic.hep.com.cn/fop/CN/Y2017/V12/I3/128904
1 Y.Kuramoto and D.Battogtokh, Coexistence of coherence and incoherence in nonlocally coupled phase oscillators, Nonlinear Phenom. Complex Syst. 5, 380 (2002)
2 D. M.Abrams and S. H.Strogatz, Chimera states for coupled oscillators, Phys. Rev. Lett.93(17), 174102 (2004)
https://doi.org/10.1103/PhysRevLett.93.174102
3 I.Omelchenko, O. E.Omel’chenko, P.Hövel, and E.Schöll, When nonlocal coupling between oscillators becomes stronger: Patched synchrony or multichimera states, Phys. Rev. Lett.110(22), 224101 (2013)
https://doi.org/10.1103/PhysRevLett.110.224101
4 J.Hizanidis, V. G.Kanas, A.Bezerianos, and T.Bountis, Chimera states in networks of nonlocally coupled HindmarshRose neuron models, Inter. J. Bif. Chaos24(03), 1450030 (2014)
https://doi.org/10.1142/S0218127414500308
5 H.Sakaguchi, Instability of synchronized motion in nonlocally coupled neural oscillators, Phys. Rev. E73(3), 031907 (2006)
https://doi.org/10.1103/PhysRevE.73.031907
6 S.Olmi, A.Politi, and A.Torcini, Collective chaos in pulsecoupled neural networks, Europhys. Lett.92(6), 60007 (2010)
https://doi.org/10.1209/0295-5075/92/60007
7 I.Omelchenko, Y.Maistrenko, P.Hövel, and E.Schöll, Loss of coherence in dynamical networks: Spatial chaos and chimera states, Phys. Rev. Lett.106(23), 234102 (2011)
https://doi.org/10.1103/PhysRevLett.106.234102
8 I.Omelchenko, B.Riemenschneider, P.Hövel, Y.Maistrenko, and E.Schöll, Transition from spatial coherence to incoherence in coupled chaotic systems, Phys. Rev. E85(2), 026212 (2012)
https://doi.org/10.1103/PhysRevE.85.026212
9 O. E.Omel’chenko, M.Wolfrum, S.Yanchuk, Y. L.Maistrenko, and O.Sudakov, Stationary patterns of coherence and incoherence in two-dimensional arrays of non-locally-coupled phase oscillators, Phys. Rev. E85(3), 036210 (2012)
https://doi.org/10.1103/PhysRevE.85.036210
10 M. J.Panaggio and D. M.Abrams, Chimera states on a flat torus, Phys. Rev. Lett.110(9), 094102 (2013)
https://doi.org/10.1103/PhysRevLett.110.094102
11 M. J.Panaggio and D. M.Abrams, Chimera states on the surface of a sphere, Phys. Rev. E91(2), 022909 (2015)
https://doi.org/10.1103/PhysRevE.91.022909
12 J.Xie,E.Knobloch, and H. C.Kao, Twisted chimera states and multicore spiral chimera states on a twodimensional torus, Phys. Rev. E92(4), 042921 (2015)
https://doi.org/10.1103/PhysRevE.92.042921
13 Y.Maistrenko, O.Sudakov, O.Osiv, and V.Maistrenko, Chimera states in three dimensions, New J. Phys. 17(7), 073037 (2015)
https://doi.org/10.1088/1367-2630/17/7/073037
14 A. M.Hagerstrom, T. E.Murphy, R.Roy, P.Hövel, I.Omelchenko, and E.Schöll, Experimental observation of chimeras in coupled-map lattices, Nat. Phys.8(9), 658 (2012)
15 M. R.Tinsley, S.Nkomo, and K.Showalter, Chimera and phasecluster states in populations of coupled chemical oscillators, Nat. Phys. 8(9), 662 (2012)
16 E. A.Viktorov, T.Habruseva, S. P.Hegarty, G.Huyet, and B.Kelleher, Coherence and incoherence in an optical comb, Phys. Rev. Lett. 112(22), 224101 (2014)
https://doi.org/10.1103/PhysRevLett.112.224101
17 N.Yao, Z. G.Huang, C.Grebogi, and Y. C.Lai, Emergence of multicluster chimera states, Sci. Rep. 5, 12988 (2015)
https://doi.org/10.1038/srep12988
18 D. M.Abrams, R.Mirollo, S. H.Strogatz, and D. A.Wiley, Solvable model for chimera states of coupled oscillators, Phys. Rev. Lett. 101(8), 084103 (2008)
https://doi.org/10.1103/PhysRevLett.101.084103
19 R.Ma, J.Wang, and Z.Liu, Robust features of chimera states and the implementation of alternating chimera states, Europhys. Lett. 91(4), 40006 (2010)
https://doi.org/10.1209/0295-5075/91/40006
20 E. A.Martens, C. R.Laing, and S. H.Strogatz, Solvable model of spiral wave chimeras, Phys. Rev. Lett. 104(4), 044101 (2010)
https://doi.org/10.1103/PhysRevLett.104.044101
21 C.Gu, G.St-Yves, and J.Davidsen, Spiral wave chimeras in complex oscillatory and chaotic systems, Phys. Rev. Lett. 111(13), 134101 (2013)
https://doi.org/10.1103/PhysRevLett.111.134101
22 C. R.Laing, The dynamics of chimera states in heterogeneous Kuramoto networks, Physica D238(16), 1569 (2009)
https://doi.org/10.1016/j.physd.2009.04.012
23 J.Xie, E.Knobloch, and H. C.Kao, Multicluster and traveling chimera states in nonlocal phase-coupled oscillators, Phys. Rev. E90(2), 022919 (2014)
https://doi.org/10.1103/PhysRevE.90.022919
24 A.Zakharova, M.Kapeller, and E.Schöll, Chimera death: Symetry breaking in dynamical networks, Phys. Rev. Lett. 112(15), 154101 (2014)
https://doi.org/10.1103/PhysRevLett.112.154101
25 P. S.Dutta and T.Banerjee, Spatial coexistence of synchronized oscillation and death: A chimeralike state, Phys. Rev. E92(4), 042919 (2015)
https://doi.org/10.1103/PhysRevE.92.042919
26 T.Banerjee, Mean-field-diffusioninduced chimera death state, Europhys. Lett. 110(6), 60003 (2015)
https://doi.org/10.1209/0295-5075/110/60003
27 M. J.Panaggio and D. M.Abrams, Chimera states: Coexistence of coherence and incoherence in networks of coupled oscillators, Nonlinearity28(3), R67 (2015)
https://doi.org/10.1088/0951-7715/28/3/R67
28 N. C.Rattenborg, C. J.Amlaner, andS. L.Lima, Behavioral, neurophysiological and evolutionary perspectives on unihemispheric sleep, Neurosci. Biobehav. Rev. 24(8), 817 (2000)
https://doi.org/10.1016/S0149-7634(00)00039-7
29 E. M.Cherry and F. H.Fenton, Visualization of spiral and scroll waves in simulated and experimental cardiac tissue, New J. Phys. 10(12), 125016 (2008)
https://doi.org/10.1088/1367-2630/10/12/125016
30 A.Rothkegel and K.Lehnertz, Irregular macroscopic dynamics due to chimera states in small-world networks of pulse-coupled oscillators, New J. Phys. 16(5), 055006 (2014)
https://doi.org/10.1088/1367-2630/16/5/055006
31 W.Singer, Neuronal synchrony: A versatile code for the definition of relations? Neuron24(1), 49 (1999)
https://doi.org/10.1016/S0896-6273(00)80821-1
32 J. F.Hipp, A. K.Engel, and M.Siegel, Oscillatory synchronization in large-scale cortical networks predicts perception, Neuron69(2), 387 (2011)
https://doi.org/10.1016/j.neuron.2010.12.027
33 P. R.Roelfsema,A.Engel, P.König, and W.Singer, Visuomotor integration is associated with zero time-lag synchronization among cortical areas, Nature385(6612), 157 (1997)
https://doi.org/10.1038/385157a0
34 T. P.Vogels and L. F.Abbott, Signal propagation and logic gating in networks of integrate-and-fire neurons, J. Neurosci. 25(46), 10786 (2005)
https://doi.org/10.1523/JNEUROSCI.3508-05.2005
35 A.Aertsen, M.Diesmann, and M.O.Gewaltig, Stable propagation of synchronous spiking in cortical neural networks, Nature402(6761), 529 (1999)
https://doi.org/10.1038/990101
36 T.Womelsdorf, J. M.Schoffelen, R.Oostenveld, W.Singer, R.Desimone, A. K.Engel, and P.Fries, Modulation of neuronal interactions through neuronal synchronization, Science316(5831), 1609 (2007)
https://doi.org/10.1126/science.1139597
37 K.Xu, W.Huang, B.Li, M.Dhamala, and Z.Liu, Controlling self-sustained spiking activity by adding or removing one network link, Europhys. Lett. 102(5), 50002 (2013)
https://doi.org/10.1209/0295-5075/102/50002
38 Z.Liu, Organization network enhanced detection and transmission of phase-locking, Europhys. Lett.100(6), 60002 (2012)
https://doi.org/10.1209/0295-5075/100/60002
39 J.Wang and Z.Liu, A chain model for signal detection and transmission, Europhys. Lett.102(1), 10003 (2013)
https://doi.org/10.1209/0295-5075/102/10003
40 K.Xu, X.Zhang, C.Wang, and Z.Liu, A simplified memory network model based on pattern formations, Sci. Rep. 4, 7568 (2014)
https://doi.org/10.1038/srep07568
41 J.Hopfield, Neural networks and physical systems with emergent collective computational abilities, Proc. Natl. Acad. Sci. USA79(8), 2554 (1982)
https://doi.org/10.1073/pnas.79.8.2554
42 P. C.Matthews, R. E.Mirollo, and S. H.Strogatz, Dynamics of a large system of coupled nonlinear oscillators, Physica D52(2–3), 293 (1991)
https://doi.org/10.1016/0167-2789(91)90129-W
43 M. C.Cross, J. L.Rogers, R.Lifshitz, and A.Zumdieck, Synchronization by reactive coupling and nonlinear frequency pulling, Phys. Rev. E73(3), 036205 (2006)
https://doi.org/10.1103/PhysRevE.73.036205
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed