Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2017, Vol. 12 Issue (6): 120505   https://doi.org/10.1007/s11467-017-0658-x
  本期目录
Detectable states, cycle fluxes, and motility scaling of molecular motor kinesin: An integrative kinetic graph theory analysis
Jie Ren()
Center for Phononics and Thermal Energy Science, School of Physics Science and Engineering, Tongji University, 200092 Shanghai, China
 全文: PDF(3049 KB)  
Abstract

The process by which a kinesin motor couples its ATPase activity with concerted mechanical handover-hand steps is a foremost topic of molecular motor physics. Two major routes toward elucidating kinesin mechanisms are the motility performance characterization of velocity and run length, and single-molecular state detection experiments. However, these two sets of experimental approaches are largely uncoupled to date. Here, we introduce an integrative motility state analysis based on a theorized kinetic graph theory for kinesin, which, on one hand, is validated by a wealth of accumulated motility data, and, on the other hand, allows for rigorous quantification of state occurrences and chemomechanical cycling probabilities. An interesting linear scaling for kinesin motility performance across species is discussed as well. An integrative kinetic graph theory analysis provides a powerful tool to bridge motility and state characterization experiments, so as to forge a unified effort for the elucidation of the working mechanisms of molecular motors.

Key wordsgraph theory    molecular motor    state detection    cycle flux    motility scaling
收稿日期: 2016-11-03      出版日期: 2017-09-07
Corresponding Author(s): Jie Ren   
 引用本文:   
. [J]. Frontiers of Physics, 2017, 12(6): 120505.
Jie Ren. Detectable states, cycle fluxes, and motility scaling of molecular motor kinesin: An integrative kinetic graph theory analysis. Front. Phys. , 2017, 12(6): 120505.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-017-0658-x
https://academic.hep.com.cn/fop/CN/Y2017/V12/I6/120505
1 R. D.Vale and R. A.Milligan, The way things move: Looking under the hood of molecular motor proteins, Science288(5463), 88 (2000)
https://doi.org/10.1126/science.288.5463.88
2 S. M.Block, Kinesin motor mechanics: Binding, stepping, tracking, gating, and limping, Biophys. J. 92(9), 2986(2007)
https://doi.org/10.1529/biophysj.106.100677
3 A.Gennerichand R. D.Vale, Walking the walk: How kinesin and dynein coordinate their steps, Curr. Opin. Cell Biol. 21(1), 59(2009)
https://doi.org/10.1016/j.ceb.2008.12.002
4 S. S.Rosenfeld, P. M.Fordyce, G. M.Jefferson, P. H.King, and S. M.Block, Stepping and Stretching: How kinesin uses internal strain to walk processively, J. Biol. Chem. 278(20), 18550(2003)
https://doi.org/10.1074/jbc.M300849200
5 L. M.Klumpp, A.Hoenger, and S. P.Gilbert, Kinesin’s second step, Proc. Natl. Acad. Sci. USA101(10), 3444(2004)
https://doi.org/10.1073/pnas.0307691101
6 N. R.Guydoshand S. M.Block, Backsteps induced by nucleotide analogs suggest the front head of kinesin is gated by strain, Proc. Natl. Acad. Sci. USA103(21), 8054(2006)
https://doi.org/10.1073/pnas.0600931103
7 D. D.Hackney, Evidence for alternating head catalysis by kinesin during microtubule-stimulated ATP hydrolysis, Proc. Natl. Acad. Sci. USA91(15), 6865(1994)
https://doi.org/10.1073/pnas.91.15.6865
8 Y. Z.Maand E. W.Taylor, Interacting head mechanism of microtubule-kinesin ATPase, J. Biol. Chem. 272(2), 724(1997)
https://doi.org/10.1074/jbc.272.2.724
9 S.Uemuraand S.Ishiwata, Loading direction regulates the affinity of ADP for kinesin, Nat. Struct. Biol. 10(4), 308(2003)
https://doi.org/10.1038/nsb911
10 A. B.Asenjo,N.Krohn, and H.Sosa, Configuration of the two kinesin motor domains during ATP hydrolysis, Nat. Struct. Biol. 10(10), 836(2003)
https://doi.org/10.1038/nsb984
11 A.Yildiz, M.Tomishige, R. D.Vale, and P. R.Selvin, Kinesin walks hand-over-hand, Science303(5658), 676(2004)
https://doi.org/10.1126/science.1093753
12 T.Mori, R. D.Vale, and M.Tomishige, How kinesin waits between steps, Nature450(7170), 750(2007)
https://doi.org/10.1038/nature06346
13 A. B.Asenjoand H.Sosa, A mobile kinesin-head intermediate during the ATP-waiting state, Proc. Natl. Acad. Sci. USA106(14), 5657(2009)
https://doi.org/10.1073/pnas.0808355106
14 K.Visscher, M. J.Schnitzer, and S. M.Block, Single kinesin molecules studied with a molecular force clamp, Nature400(6740), 184(1999)
https://doi.org/10.1038/22146
15 W. R.Schief, R. H.Clark, A. H.Crevenna, and J.Howard, Inhibition of kinesin motility by ADP and phosphate supports a hand-over-hand mechanism, Proc. Natl. Acad. Sci. USA101(5), 1183(2004)
https://doi.org/10.1073/pnas.0304369101
16 N. J.Carterand R. A.Cross, Mechanics of the kinesin step, Nature435(7040), 308(2005)
https://doi.org/10.1038/nature03528
17 M. J.Schnitzer, K.Visscher, andS. M.Block, Force production by single kinesin motors, Nat. Cell Biol.2(10), 718(2000)
https://doi.org/10.1038/35036345
18 K. S.Thorn, J. A.Ubersax, and R. D.Vale, Engineering the processive run length of the kinesin motor, J. Cell Biol.151(5), 1093(2000)
https://doi.org/10.1083/jcb.151.5.1093
19 J.Yajima, M. C.Alonso, R. A.Cross, and Y. Y.Toyoshima, Direct long-term observation of kinesin processivity at low load, Curr. Biol.12(4), 301(2002)
https://doi.org/10.1016/S0960-9822(01)00683-2
20 K.Kawaguchiand S.Ishiwata, Temperature dependence of force, velocity, and processivity of single kinesin molecules, Biochem. Biophys. Res. Commun.272(3), 895(2000)
https://doi.org/10.1006/bbrc.2000.2856
21 I.Naraand S.Ishiwata, Processivity of kinesin motility is enhanced on increasing temperature, Biophysics2, 13(2006)
https://doi.org/10.2142/biophysics.2.13
22 S.Uemura, K.Kawaguchi, J.Yajima, M.Edamatsu, Y. Y.Toyoshima, and S.Ishiwata, Kinesin-microtubule binding depends on both nucleotide state and loading direction, Proc. Natl. Acad. Sci. USA99(9), 5977(2002)
https://doi.org/10.1073/pnas.092546199
23 N. R.Guydoshand S. M.Block, Direct observation of the binding state of the kinesin head to the microtubule, Nature461(7260), 125(2009)
https://doi.org/10.1038/nature08259
24 A.Yildiz, M.Tomishige, A.Gennerich, and R. D.Vale, Intramolecular strain coordinates kinesin stepping behavior along microtubules, Cell134(6), 1030(2008)
https://doi.org/10.1016/j.cell.2008.07.018
25 Q.Shaoand Y. Q.Gao, On the hand-over-hand mechanism of kinesin, Proc. Natl. Acad. Sci. USA103(21), 8072(2006)
https://doi.org/10.1073/pnas.0602828103
26 W. W.Zheng, D.Fan, M.Feng, and Z. S.Wang, Loadresisting capacity of kinesin, Phys. Biol. 6(3), 036002(2009)
https://doi.org/10.1088/1478-3975/6/3/036002
27 Z. S.Wang, M.Feng, W. W.Zheng, and D. G.Fan, Kinesin is an evolutionarily fine-tuned molecular ratchetand- pawl device of decisively locked directionality, Biophys. J.93(10), 3363(2007)
https://doi.org/10.1529/biophysj.107.108233
28 C.Hyeonand J. N.Onuchic, Internal strain regulates the nucleotide binding site of the kinesin leading head, Proc. Natl. Acad. Sci. USA104(7), 2175(2007)
https://doi.org/10.1073/pnas.0610939104
29 Y.Okadaand N.Hirokawa, Mechanism of the singleheaded processivity: Diffusional anchoring between the K-loop of kinesin and the C terminus of tubulin, Proc. Natl. Acad. Sci. USA97(2), 640(2000)
https://doi.org/10.1073/pnas.97.2.640
30 S.Liepeltand R.Lipowsky,Kinesin’s network of chemomechanical motor cycles, Phys. Rev. Lett.98(25), 258102(2007)
https://doi.org/10.1103/PhysRevLett.98.258102
31 R. A.Cross, The kinetic mechanism of kinesin, Trends Biochem. Sci.29(6), 301(2004) (and references therein)
https://doi.org/10.1016/j.tibs.2004.04.010
32 D. G.Fan, W. W.Zheng, R.Hou, F.Li, and Z. S.Wang, Modelling motility of the kinesin dimer from molecular properties of individual monomers, Biochemistry47(16), 4733(2008)
https://doi.org/10.1021/bi800072p
33 W. O.Hancockand J.Howard, Kinesin’s processivity results from mechanical and chemical coordination between the ATP hydrolysis cycles of the two motor domains, Proc. Natl. Acad. Sci. USA96(23), 13147(1999)
https://doi.org/10.1073/pnas.96.23.13147
34 S. D.Auerbachand K. A.Johnson, Alternating site ATPase pathway of rat conventional kinesin, J. Biol. Chem. 280(44), 37048(2005)
https://doi.org/10.1074/jbc.M502984200
35 T. L.Hill, Studies in irreversible thermodynamics (IV): Diagrammatic representation of steady-state fluxes for unimolecular systems, J. Theor. Biol. 10(3), 442(1966)
https://doi.org/10.1016/0022-5193(66)90137-8
36 T. L.Hilland Y. D.Chen, Stochatics of cycle completions (fluxes) in biochemical kinetic diagram, Proc. Natl. Acad. Sci. USA72(4), 1291(1975)
https://doi.org/10.1073/pnas.72.4.1291
37 H. H.Kohlerand E.Vollmerhaus, The frequency of cyclic processes in biological multistate systems, J. Math. Biol. 9(3), 275(1980)
https://doi.org/10.1007/BF00276029
38 W. T.Tutter, Graph Theory, Cambridge: Cambridge University Press, 2001
39 E. L.Kingand C.Altman, A schematic method of deriving the rate laws for enzyme-catalyzed reactions, J. Phys. Chem. 60(10), 1375(1956)
https://doi.org/10.1021/j150544a010
40 S. M.Block, C. L.Asbury, J. W.Shaevitz, and M. J.Lang, Probing the kinesin reaction cycle with a 2D optical force clamp, Proc. Natl. Acad. Sci. USA100(5), 2351(2003)
https://doi.org/10.1073/pnas.0436709100
41 S.Rice, A. W.Lin, D.Safer, C. L.Hart, N.Naber, B. O.Carragher, S. M.Cain, E.Pechatnikova, E. M.Wilson-Kubalek, M.Whittaker, E.Pate, R.Cooke, E. W.Taylor, R. A.Milligan, and R. D.Vale, A structural change in the kinesin motor protein that drives motility, Nature402(6763), 778(1999)
https://doi.org/10.1038/45483
42 W.Hua, E. C.Young, M. L.Fleming, and J.Gelles, Coupling of kinesin steps to ATP hydrolysis, Nature388(6640), 390(1997)
https://doi.org/10.1038/41118
43 M. J.Schnitzerand S. M.Block, Kinesin hydrolyses one ATP per 8-nm step, Nature388(6640), 386(1997)
https://doi.org/10.1038/41111
44 A.Seitz, H.Kojima, K.Oiwa, E. M.Mandelkow, Y. H.Song, and E.Mandelkow, Single-molecule investigation of the interference between kinesin, tau and MAP2c, EMBO J. 21(18), 4896(2002)
https://doi.org/10.1093/emboj/cdf503
45 S.Lakämper, A.Kallipolitou, G.Woehlke, M.Schliwa, and E.Meyhofer, Single fungal kinesin motor molecules move processively along microtubules, Biophys. J. 84(3), 1833(2003)
https://doi.org/10.1016/S0006-3495(03)74991-1
46 R. D.Vale, T.Funatsu, D. W.Pierce, L.Romberg, Y.Harada, and T.Yanagida, Direct observation of single kinesin molecules moving along microtubules, Nature380(6573), 451(1996)
https://doi.org/10.1038/380451a0
47 D. L.Coy, M.Wagenbach, and J.Howard, Kinesin takes one 8-nm step for each ATP that it hydrolyzes, J. Biol. Chem. 274(6), 3667(1999)
https://doi.org/10.1074/jbc.274.6.3667
48 S.Courty, C.Luccardini, Y.Bellaiche, G.Cappello, and M.Dahan, Tracking individual kinesin motors in living cells using single quantum-dot imaging, Nano Lett. 6(7), 1491(2006)
https://doi.org/10.1021/nl060921t
49 D.Vale, Myosin V motor proteins, J. Cell Biol. 163, 445(2003)
https://doi.org/10.1083/jcb.200308093
50 J.Ren, V. Y.Chernyak, andN. A.Sinitsyn, Duality and fluctuation relations for statistics of currents on cyclic graphs, J. Stat. Mech.: Theo. Exp. 05, 05011(2011)
https://doi.org/10.1088/1742-5468/2011/05/P05011
51 J.Renand N. A.Sinitsyn, Braid group and topological phase transitions in nonequilibrium stochastic dynamics, Phys. Rev. E87(5), 050101(2013) (R)
https://doi.org/10.1103/PhysRevE.87.050101
52 R.Tarjan, Enumeration of the elementary circuits of a directed graph, SIAM J. Comput. 2(3), 211(1973)
https://doi.org/10.1137/0202017
53 L.Onsagerand S.Machlup, Fluctuations and irreversible processes, Phys. Rev. 91(6), 1505(1953)
https://doi.org/10.1103/PhysRev.91.1505
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed