Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2017, Vol. 12 Issue (6): 128905   https://doi.org/10.1007/s11467-017-0661-2
  本期目录
New approaches in agent-based modeling of complex financial systems
Ting-Ting Chen1,2,Bo Zheng1,2(),Yan Li1,2,Xiong-Fei Jiang1,2
1. Department of Physics, Zhejiang University, Hangzhou 310027, China
2. Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
 全文: PDF(638 KB)  
Abstract

Agent-based modeling is a powerful simulation technique to understand the collective behavior and microscopic interaction in complex financial systems. Recently, the concept for determining the key parameters of agent-based models from empirical data instead of setting them artificially was suggested. We first review several agent-based models and the new approaches to determine the key model parameters from historical market data. Based on the agents’ behaviors with heterogeneous personal preferences and interactions, these models are successful in explaining the microscopic origination of the temporal and spatial correlations of financial markets. We then present a novel paradigm combining big-data analysis with agent-based modeling. Specifically, from internet query and stock market data, we extract the information driving forces and develop an agent-based model to simulate the dynamic behaviors of complex financial systems.

Key wordseconophysics    complex systems
收稿日期: 2016-11-09      出版日期: 2017-04-13
Corresponding Author(s): Bo Zheng   
 引用本文:   
. [J]. Frontiers of Physics, 2017, 12(6): 128905.
Ting-Ting Chen,Bo Zheng,Yan Li,Xiong-Fei Jiang. New approaches in agent-based modeling of complex financial systems. Front. Phys. , 2017, 12(6): 128905.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-017-0661-2
https://academic.hep.com.cn/fop/CN/Y2017/V12/I6/128905
1 F. Black, Studies of stock price volatility changes, Alexandria, 1976. Proceedings of the 1976 Meetings of the American Statistical Association, Business and Economical Statistics Section, pp 177–181
2 R. N. Mantegna and H. E. Stanley, Scaling behavior in the dynamics of an economic index, Nature 376(6535), 46 (1995)
https://doi.org/10.1038/376046a0
3 P. Gopikrishnan, V. Plerou, L. A. N. Amaral, M. Meyer, and H. E. Stanley, Scaling of the distribution of fluctuations of financial market indices, Phys. Rev. E 60(5), 5305 (1999)
https://doi.org/10.1103/PhysRevE.60.5305
4 Y. Liu, P. Gopikrishnan, P. Cizeau, M. Meyer, C. K. Peng, and H. E. Stanley, Statistical properties of the volatility of price fluctuation, Phys. Rev. E 60(2), 1390 (1999)
https://doi.org/10.1103/PhysRevE.60.1390
5 X. Gabaix, P. Gopikrishnan, V. Plerou, and H. E. Stanley, A theory of power-law distributions in financial market fluctuations, Nature 423(6937), 267 (2003)
https://doi.org/10.1038/nature01624
6 T. Qiu, B. Zheng, F. Ren, and S. Trimper, Returnvolatility correlation in financial dynamics, Phys. Rev. E 73(6), 065103 (2006)
https://doi.org/10.1103/PhysRevE.73.065103
7 X. F. Jiang, T. T. Chen, and B. Zheng, Structure of local interactions in complex financial dynamics, Sci. Rep. 4, 5321 (2014)
https://doi.org/10.1038/srep05321
8 B. Zheng, X. F. Jiang, and P. Y. Ni, A mini-review on econophysics: Comparative study of Chinese and western financial markets, Chin. Phys. B 23(7), 078903 (2014)
https://doi.org/10.1088/1674-1056/23/7/078903
9 L. Tan, B. Zheng, J. J. Chen, and X. F. Jiang, How volatilities nonlocal in time affect the price dynamics in complex financial systems, PLoS One 10(2), e118399 (2015)
https://doi.org/10.1371/journal.pone.0118399
10 T. Preis, J. J. Schneider, and H. E. Stanley, Switching processes in financial markets, Proc. Natl. Acad. Sci. USA 108(19), 7674 (2011)
https://doi.org/10.1073/pnas.1019484108
11 B. Podobnik, A. Valentinčič, D. Horvatič, and H. E. Stanley, Asymmetric Lévy flight in financial ratios, Proc. Natl. Acad. Sci. USA 108(44), 17883 (2011)
https://doi.org/10.1073/pnas.1113330108
12 W. Li, F. Z. Wang, S. Havlin, and H. E. Stanley, Financial factor influence on scaling and memory of trading volume in stock market, Phys. Rev. E 84(4), 046112 (2011)
https://doi.org/10.1103/PhysRevE.84.046112
13 M. Tumminello, F. Lillo, J. Piilo, and R. N. Mantegna, Identification of clusters of investors from their real trading activity in a financial market, New J. Phys. 14(1), 013041 (2012)
https://doi.org/10.1088/1367-2630/14/1/013041
14 M. C. Münnix, T. Shimada, R. Schäfer, F. Leyvraz, T. H. Seligman, T. Guhr, and H. E. Stanley, Identifying states of a financial market, Sci. Rep. 2, 644 (2012)
https://doi.org/10.1038/srep00644
15 X. F. Jiang and B. Zheng, Anti-correlation and subsector structure in financial systems, Europhys. Lett. 97(4), 48006 (2012)
https://doi.org/10.1209/0295-5075/97/48006
16 X. F. Jiang, T. T. Chen, and B. Zheng, Time-reversal asymmetry in financial systems, Physica A 392(21), 5369 (2013)
https://doi.org/10.1016/j.physa.2013.07.006
17 Y. Yura, H. Takayasu, D. Sornette, and M. Takayasu, Financial Brownian particle in the layered order-book fluid and fluctuation-dissipation relations, Phys. Rev. Lett. 112(9), 098703 (2014)
https://doi.org/10.1103/PhysRevLett.112.098703
18 A. Shleifer, Inefficient markets: An introduction to behavioral finance, J. Inst. & Theor. Econ. 158(2), 369 (2002)
https://doi.org/10.1628/0932456022975402
19 H. Jo and D. M. Kim, Recent development of behavioral finance, Int. J. Bus. Res. 8(2), 89 (2008)
20 L. Feng, B. Li, B. Podobnik, T. Preis, and H. E. Stanley, Linking agent-based models and stochastic models of financial markets, Proc. Natl. Acad. Sci. USA 09(22), 8388 (2012)
https://doi.org/10.1073/pnas.1205013109
21 J. J. Chen, B. Zheng, and L. Tan, Agent-based model with asymmetric trading and herding for complex financial systems, PLoS One 8(11), 79531 (2013)
https://doi.org/10.1371/journal.pone.0079531
22 V. Gontis and A. Kononovicius, Consentaneous agent based and stochastic model of the financial markets, PLoS One 9(7), 102201 (2014)
https://doi.org/10.1371/journal.pone.0102201
23 Y. Shapira, Y. Berman, and E. B. Jacob, Modelling the short term herding behaviour of stock markets, New J. Phys. 16(5), 53040 (2014)
https://doi.org/10.1088/1367-2630/16/5/053040
24 J. J. Chen, B. Zheng, and L. Tan, Agent-based model with multi-level herding for complex financial systems, Sci. Rep. 5, 8399 (2015)
https://doi.org/10.1038/srep08399
25 T. Kaizoji, M. Leiss, A. Saichev, and D. Sornette, Superexponential endogenous bubbles in an equilibrium model of fundamentalist and chartist traders, J. Econ. Behav. Organ. 112, 289 (2015)
https://doi.org/10.1016/j.jebo.2015.02.001
26 R. Savona, M. Soumare, and J. V. Andersen, Financial symmetry and moods in the market, PLoS One 10(4), 0118224 (2015)
https://doi.org/10.1371/journal.pone.0118224
27 E. Samanidou, E. Zschischang, D. Stauffer, and T. Lux, Agent-based models of financial markets, Rep. Prog. Phys. 70(3), 409 (2007)
https://doi.org/10.1088/0034-4885/70/3/R03
28 R. N. Mantegna and J. Kertész, Focus on statistical physics modeling in economics and finance, New J. Phys. 13(2), 25011 (2011)
https://doi.org/10.1088/1367-2630/13/2/025011
29 A. Chakraborti, I. M. Toke, M. Patriarca, and F. Abergel, Econophysics review (II): Agent-based models, Quant. Finance 11(7), 1013 (2011)
https://doi.org/10.1080/14697688.2010.539249
30 D. Sornette, Physics and financial economics (1776– 2014): Puzzles, Ising and agent-based models, Rep. Prog. Phys. 77(6), 62001 (2014)
https://doi.org/10.1088/0034-4885/77/6/062001
31 T. Preis, H. S. Moat, H. E. Stanley, and S. R. Bishop, Quantifying the advantage of looking forward, Sci. Rep. 2, 350 (2012)
https://doi.org/10.1038/srep00350
32 I. Bordino, S. Battiston, G. Caldarelli, M. Cristelli, A. Ukkonen, and I. Weber, Web search queries can predict stock market volumes, PLoS One 7(7), 40014 (2012)
https://doi.org/10.1371/journal.pone.0040014
33 T. Preis, H. S. Moat, and H. E. Stanley, Quantifying trading behavior in financial markets using google trends, Sci. Rep. 3, 1684 (2013)
https://doi.org/10.1038/srep01684
34 H. S. Moat, C. Curme, A. Avakian, D. Y. Kenett, H. E. Stanley, and T. Preis, Quantifying wikipedia usage patterns before stock market moves, Sci. Rep. 3, 1801 (2013)
https://doi.org/10.1038/srep01801
35 R. Hisano, D. Sornette, T. Mizuno, T. Ohnishi, and T. Watanabe, High quality topic extraction from business news explains abnormal financial market volatility, PLoS One 8(6), 64846 (2013)
https://doi.org/10.1371/journal.pone.0064846
36 L. Kristoufek, Can google trends search queries contribute to risk diversification, Sci. Rep. 3, 2713 (2013)
https://doi.org/10.1038/srep02713
37 T. Noguchi, N. Stewart, C. Y. Olivola, H. S. Moat, and T. Preis, Characterizing the time-perspective of nations with search engine query data, PLoS One 9(4), e95209 (2014)
https://doi.org/10.1371/journal.pone.0095209
38 C. Curme, T. Preis, H. E. Stanley, and H. S. Moat, Quantifying the semantics of search behavior before stock market moves, Proc. Natl. Acad. Sci. USA 111(32), 11600 (2014)
https://doi.org/10.1073/pnas.1324054111
39 F. Lillo, S. Micciche, M. Tumminello, J. Piilo, and R. N. Mantegna, How news affects the trading behaviour of different categories of the investors in a financial market, Quant. Finance 15(2), 213 (2015)
https://doi.org/10.1080/14697688.2014.931593
40 I. Giardina, J. P. Bouchaud, and M. Mézard, Microscopic models for long ranged volatility correlations, Physica A 299(1–2), 28 (2001)
https://doi.org/10.1016/S0378-4371(01)00280-1
41 E. Bonabeau, Agent-based modeling: methods and techniques for simulating human systems, Proc. Natl. Acad. Sci. USA 99(Suppl. 3), 7280 (2002)
https://doi.org/10.1073/pnas.082080899
42 T. P. Evans and H. Kelley, Multi-scale analysis of a household level agent-based model of landcover change, J. Environ. Manage. 72(1–2), 57 (2004)
https://doi.org/10.1016/j.jenvman.2004.02.008
43 F. Ren, B. Zheng, T. Qiu, and S. Trimper, Minority games with score-dependent and agent-dependent payoffs, Phys. Rev. E 74(4), 041111 (2006)
https://doi.org/10.1103/PhysRevE.74.041111
44 J. D. Farmer and D. Foley, The economy needs agent based modelling, Nature 460(7256), 685 (2009)
https://doi.org/10.1038/460685a
45 F. Schweitzer, G. Fagiolo, D. Sornette, F. V. Redondo, A. Vespignani, and D. R. White, Economic networks: The new challenges, Science 325, 422 (2009)
46 S. Mike and J. D. Farmer, An empirical behavioral model of liquidity and volatility, J. Econo. Dyn. Contr. 32(1), 200 (2008)
https://doi.org/10.1016/j.jedc.2007.01.025
47 G. F. Gu and W. X. Zhou, On the probability distribution of stock returns in the mike-farmer model, Eur. Phys. J. B 67(4), 585 (2009)
https://doi.org/10.1140/epjb/e2009-00052-4
48 G. F. Gu and W. X. Zhou, Emergence of long memory in stock volatility from a modified mike-farmer model, Europhys. Lett. 86, 48002 (2009)
https://doi.org/10.1209/0295-5075/86/48002
49 H. Meng, F. Ren, G. F. Gu, X. Xiong, Y. J.Zhang, W. X. Zhou, and W. Zhang, Effects of long memory in the order submission process on the properties of recurrence intervals of large price fluctuations, Europhys. Lett. 98(3), 38003 (2012)
https://doi.org/10.1209/0295-5075/98/38003
50 J. Zhou, G. F. Gu, Z. Q. Jiang, X. Xiong, W. Chen, W. Zhang, and W. X. Zhou, Computational experiments successfully predict the emergence of autocorrelations in ultrahigh-frequency stock returns, Comput. Econ. (2016) (in press)
https://doi.org/10.1007/s10614-016-9612-1
51 T. T. Chen, B. Zheng, and Y. Li, Information driving forces and agent-based modelling (submitted)
52 L. Menkhoff, The use of technical analysis by fund managers: International evidence, J. Bank. Finance 34(11), 2573 (2010)
https://doi.org/10.1016/j.jbankfin.2010.04.014
53 V. M. Eguíluz and M. G. Zimmermann, Transmission of information and herd behavior: An application to financial markets, Phys. Rev. Lett. 85(26), 5659 (2000)
https://doi.org/10.1103/PhysRevLett.85.5659
54 D. Y. Kenett, Y. Shapira, A. Madi, S. Bransburg-Zabary, G. Gur-Gershgoren, and E. Ben-Jacob, Index cohesive force analysis reveals that the US market became prone to systemic collapses since 2002, PLoS One 6(4), e19378 (2011)
https://doi.org/10.1371/journal.pone.0019378
55 J. Shen and B. Zheng, On return-volatility correlation in financial dynamics, Europhys. Lett. 88(2), 28003 (2009)
https://doi.org/10.1209/0295-5075/88/28003
56 B. J. Park, Asymmetric herding as a source of asymmetric return volatility, J. Bank. Finance 35(10), 2657 (2011)
https://doi.org/10.1016/j.jbankfin.2011.02.025
57 K. A. Kim and J. R. Nofsinger, Institutional herding, business groups, and economic regimes: Evidence from Japan, J. Bus. 78(1), 213 (2005)
https://doi.org/10.1086/426524
58 A. Walter and F. M. Weber, Herding in the German mutual fund industry, Eur. Financ. Manag. 12(3), 375 (2006)
https://doi.org/10.1111/j.1354-7798.2006.00325.x
59 R. Cont and J. P. Bouchaud, Herd behavior and aggregate fluctuations in financial markets, Macroecon. Dyn. 4(02), 170 (2000)
https://doi.org/10.1017/S1365100500015029
60 N. Blasco, P. Corredor, and S. Ferreruela, Does herding affect volatility? Implications for the Spanish stock market, Quant. Finance 12(2), 311 (2012)
https://doi.org/10.1080/14697688.2010.516766
61 J. P. Bouchaud, A. Matacz, and M. Potters, Leverage effect in financial markets: The retarded volatility model, Phys. Rev. Lett. 87(22), 228701 (2001)
https://doi.org/10.1103/PhysRevLett.87.228701
62 Y. H. Shao, G. F. Gu, Z. Q. Jiang, W. X. Zhou, and D. Sornette, Comparing the performance of fa, dfa and dma using different synthetic long-range correlated time series, Sci. Rep. 2, 5225 (2012)
https://doi.org/10.1038/srep00835
63 P. Gopikrishnan, M. Meyer, L. A. N. Amaral, and H. E. Stanley, Inverse cubic law for the distribution of stock price variations, Eur. Phys. J. B 3(2), 139 (1998)
https://doi.org/10.1007/s100510050292
64 G. F. Gu, W. Chen, and W. X. Zhou, Empirical distributions of Chinese stock returns at different microscopic timescales, Physica A 387(2–3), 495 (2008)
https://doi.org/10.1016/j.physa.2007.10.012
65 V. Plerou, P. Gopikrishnan, L. A. Nunes Amaral, M. Meyer, and H. E. Stanley, Scaling of the distribution of price fluctuations of individual companies, Phys. Rev. E 60(6), 6519 (1999)
https://doi.org/10.1103/PhysRevE.60.6519
66 G. H. Mu and W. X. Zhou, Tests of nonuniversality of the stock return distributions in an emerging market, Phys. Rev. E 82(6), 066103 (2010)
https://doi.org/10.1103/PhysRevE.82.066103
67 V. Plerou, P. Gopikrishnan, and H. E. Stanley, Twophase behaviour of financial markets, Nature 421(6919), 130 (2003)
https://doi.org/10.1038/421130a
68 V. Plerou, P. Gopikrishnan, X. Gabaix, and H. E. Stanley, Quantifying stock-price response to demand fluctuations, Phys. Rev. E 66, 027104 (2002)
https://doi.org/10.1103/PhysRevE.66.027104
69 A. Utsugi, K. Ino, and M. Oshikawa, Random matrix theory analysis of cross correlations in financial markets, Phys. Rev. E 70, 026110 (2004)
https://doi.org/10.1103/PhysRevE.70.026110
70 R. K. Pan and S. Sinha, Self-organization of price fluctuation distribution in evolving markets, Europhys. Lett. 77(5), 58004 (2007)
https://doi.org/10.1209/0295-5075/77/58004
71 J. Shen and B. Zheng, Cross-correlation in financial dynamics, Europhys. Lett. 86(4), 48005 (2009)
https://doi.org/10.1209/0295-5075/86/48005
72 B. Podobnik, D. Wang, D. Horvatic, I. Grosse, and H. E. Stanley, Time-lag cross-correlations in collective phenomena, Europhys. Lett. 90(6), 68001 (2010)
https://doi.org/10.1209/0295-5075/90/68001
73 L. Corazzini and B. Greiner, Herding, social preferences and (non-)conformity, Econ. Lett. 97(1), 74 (2007)
https://doi.org/10.1016/j.econlet.2007.02.024
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed