Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2017, Vol. 12 Issue (3): 128906   https://doi.org/10.1007/s11467-017-0664-z
  本期目录
Network reconstructions with partially available data
Chaoyang Zhang1(),Yang Chen2,Gang Hu3()
1. Department of Physics, Ningbo University, Ningbo 315211, China
2. School of Sciences, Beijing University of Posts and Telecommunications, Beijing 100876, China
3. Department of Physics, Beijing Normal University, Beijing 100875, China
 全文: PDF(1884 KB)  
Abstract

Many practical systems in natural and social sciences can be described by dynamical networks. Day by day we have measured and accumulated huge amounts of data from these networks, which can be used by us to further our understanding of the world. The structures of the networks producing these data are often unknown. Consequently, understanding the structures of these networks from available data turns to be one of the central issues in interdisciplinary fields, which is called the network reconstruction problem. In this paper, we considered problems of network reconstructions using partially available data and some situations where data availabilities are not sufficient for conventional network reconstructions. Furthermore, we proposed to infer subnetwork with data of the subnetwork available only and other nodes of the entire network hidden; to depict group-group interactions in networks with averages of groups of node variables available; and to perform network reconstructions with known data of node variables only when networks are driven by both unknown internal fast-varying noises and unknown external slowly-varying signals. All these situations are expected to be common in practical systems and the methods and results may be useful for real world applications.

Key wordsnetwork reconstruction    dynamics    data analysis
收稿日期: 2016-11-01      出版日期: 2017-04-13
Corresponding Author(s): Chaoyang Zhang,Gang Hu   
 引用本文:   
. [J]. Frontiers of Physics, 2017, 12(3): 128906.
Chaoyang Zhang,Yang Chen,Gang Hu. Network reconstructions with partially available data. Front. Phys. , 2017, 12(3): 128906.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-017-0664-z
https://academic.hep.com.cn/fop/CN/Y2017/V12/I3/128906
1 D. J. Watts and S. H. Strogatz, Collective dynamics of small-world networks, Nature 393(6684), 440 (1998)
https://doi.org/10.1038/30918
2 A. L. Barabási and R. Albert, Emergence of scaling in random networks, Science 286(5439), 509 (1999)
https://doi.org/10.1126/science.286.5439.509
9 Z. Hu, P. J. Killion, and V. R. Iyer, Genetic reconstruction of a functional transcriptional regulatory network, Nat. Genet. 39(5), 683 (2007)
https://doi.org/10.1038/ng2012
10 T. R. Lezon, J. R. Banavar, M. Cieplak, A. Maritan, and N. V. Fedoroff, Using the principle of entropy maximization to infer genetic interaction networks from gene expression patterns, Proc. Natl. Acad. Sci. USA 103(50), 19033 (2006)
https://doi.org/10.1073/pnas.0609152103
3 A. L. Barabási and Z. N. Oltvai, Network biology: Understanding the cell’s functional organization, Nat. Rev. Genet. 5(2), 101 (2004)
https://doi.org/10.1038/nrg1272
4 A. M. Feist, M. J. Herrgard, I. Thiele, J. L. Reed, and B. O. Palsson, Reconstruction of biochemical networks in microorganisms, Nat. Rev. Microbiol. 7(2), 129 (2008)
https://doi.org/10.1038/nrmicro1949
11 B. Barzel and A. L. Barabasi, Network link prediction by global silencing of indirect correlations, Nat. Biotechnol. 31(8), 720 (2013)
https://doi.org/10.1038/nbt.2601
12 S. Feizi, D. Marbach, M. Medard, and M. Kellis, Network deconvolution as a general method to distinguish direct dependencies in networks, Nat. Biotechnol. 31(8), 726 (2013)
https://doi.org/10.1038/nbt.2635
5 R. De Smet and K. Marchal, Advantages and limitations of current network inference methods, Nat. Rev. Microbiol. 8, 717 (2010)
https://doi.org/10.1038/nrmicro2419
6 M. K. S. Yeung, J. Tegner, and J. J. Collins, Reverse engineering gene networks using singular value decomposition and robust regression, Proc. Natl. Acad. Sci. USA 99(9), 6163 (2002)
https://doi.org/10.1073/pnas.092576199
13 K. Basso, A. A. Margolin, G. Stolovitzky, U. Klein, R. Dalla-Favera, and A. Califano, Reverse engineering of regulatory networks in human b cells, Nat. Genet. 37(4), 382 (2005)
https://doi.org/10.1038/ng1532
14 M. Bansal, V. Belcastro, A. Ambesi-Impiombato, and D. di Bernardo, How to infer gene networks from expression profiles, Mol. Syst. Biol. 3, 78 (2007)
https://doi.org/10.1038/msb4100158
7 J. M. Stuart, E. Segal, D. Koller, and S. K. Kim, A genecoexpression network for global discovery of conserved genetic modules, Science 302(5643), 249 (2003)
https://doi.org/10.1126/science.1087447
8 E. Segal, M. Shapira, A. Regev, D. Pe’er, D. Botstein, D. Koller, and N. Friedman, Module networks: Identifying regulatory modules and their condition-specific regulators from gene expression data, Nat. Genet. 34(2), 166 (2003)
https://doi.org/10.1038/ng1165
15 D. Marbach, J. C. Costello, R. Kuffner, N. M. Vega, R. J. Prill, et al, Wisdom of crowds for robust gene network inference, Nat. Methods 9(8), 796 (2012)
https://doi.org/10.1038/nmeth.2016
16 A. F. Villaverde, J. Ross, and J. R. Banga, Reverse engineering cellular networks with information theoretic methods, Cells 2(2), 306 (2013)
https://doi.org/10.3390/cells2020306
17 R. Jansen, H. Yu, D. Greenbaum, Y. Kluger, N. J. Krogan, et al, A bayesian networks approach for predicting protein-protein interactions from genomic data, Science 302(5644), 449 (2003)
https://doi.org/10.1126/science.1087361
18 N. Friedman, Inferring cellular networks using probabilistic graphical models, Science 303(5659), 799 (2004)
https://doi.org/10.1126/science.1094068
19 A. C. Haury, F. Mordelet, P. Vera-Licona, and J. P.Vert, Tigress: Trustful inference of gene regulation using stability selection, BMC Syst. Biol. 6(1), 145 (2012)
https://doi.org/10.1186/1752-0509-6-145
20 T. S. Gardner, D. di Bernardo, D. Lorenz, and J. J. Collins, Inferring genetic networks and identifying compound mode of action via expression profiling, Science 301(5629), 102 (2003)
https://doi.org/10.1126/science.1081900
21 M. W. Covert, E. M. Knight, J. L. Reed, M. J. Herrgard, and B. O. Palsson, Integrating highthroughput and computational data elucidates bacterial networks, Nature 429(6987), 92 (2004)
https://doi.org/10.1038/nature02456
22 M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein, Cluster analysis and display of genomewide expression patterns, Proc. Natl. Acad. Sci. USA 95(25), 14863 (1998)
https://doi.org/10.1073/pnas.95.25.14863
23 Z. Zhang, Z. Zheng, H. Niu, Y. Mi, S. Wu, and G. Hu, Solving the inverse problem of noise-driven dynamic networks, Phys. Rev. E 91(1), 012814 (2015)
https://doi.org/10.1103/PhysRevE.91.012814
24 Y. Chen, S. Wang, Z. Zheng, Z. Zhang, and G. Hu, Depicting network structures from variable data produced by unknown colored-noise driven dynamics, Europhys. Lett. 113(1), 18005 (2016)
https://doi.org/10.1209/0295-5075/113/18005
25 Y. Chen, Z. Zhang, T. Chen, S. Wang, and G. Hu, Depict noise-driven nonlinear dynamic networks from output data by using high-order correlations, arXiv: 1605.05513
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed