Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2017, Vol. 12 Issue (3): 128908   https://doi.org/10.1007/s11467-017-0667-9
  本期目录
Structural effects and competition mechanisms targeting the interactions between p53 and MDM2 for cancer therapy
Shu-Xia Liu1,Yi-Zhao Geng2,Shi-Wei Yan1,3()
1. College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China
2. School of Science, Hebei University of Technology, Tianjin 300401, China
3. Beijing Radiation Center, Beijing 100875, China
 全文: PDF(7030 KB)  
Abstract

Approximately half of all human cancers show normal TP53 gene expression but aberrant overexpression of MDM2 and/or MDMX. This fact suggests a promising cancer therapeutic strategy in targeting the interactions between p53 and MDM2/MDMX. To help realize the goal of developing effective inhibitors to disrupt the p53–MDM2/MDMX interaction, we systematically investigated the structural and interaction characteristics of p53 with inhibitors of its interactions with MDM2 and MDMX from an atomistic perspective using stochastic molecular dynamics simulations. We found that some specific α helices in the structures of MDM2 and MDMX play key roles in their binding to inhibitors, and that the hydrogen bond formed by the Trp23 residue of p53 with its counterpart in MDM2 or MDMX determines the dynamic competition processes of the disruption of the MDM2–p53 interaction and replacement of p53 from the MDM2–p53 complex in vivo. The results reported in this paper are expected to provide basic information for designing functional inhibitors and realizing new strategies of cancer gene therapy.

Key wordsp53    MDMX    MDM2    molecular dynamics simulation    inhibitors    cancer therapy
收稿日期: 2016-10-21      出版日期: 2017-04-13
Corresponding Author(s): Shi-Wei Yan   
 引用本文:   
. [J]. Frontiers of Physics, 2017, 12(3): 128908.
Shu-Xia Liu,Yi-Zhao Geng,Shi-Wei Yan. Structural effects and competition mechanisms targeting the interactions between p53 and MDM2 for cancer therapy. Front. Phys. , 2017, 12(3): 128908.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-017-0667-9
https://academic.hep.com.cn/fop/CN/Y2017/V12/I3/128908
1 G. M. Popowicz, A. Dömling, and T. A. Holak, The Structure-Based Design of MDM2/MDMX-p53 Inhibitors Gets Serious, Angew. Chem. Int. Ed. 50(12), 2680 (2011)
https://doi.org/10.1002/anie.201003863
2 X. Wang, J. Wang, and X. Jiang, MDMX protein is essential for MDM2 protein-mediated p53 polyubiquitination, J. Biochem. 286, 23725 (2011)
https://doi.org/10.1074/jbc.m110.213868
3 L. T. Vassilev, B. T. Vu, B. Graves, D. Carvajal, F. Podlaski, Z. Filipovic, N. Kong, U. Kammlott, C. Lukacs, C. Klein, N. Fotouhi, and E. A. Liu, In vivo activation of the p53 pathway by small-molecule antagonists of MDM2, Science 303(5659), 844 (2004)
https://doi.org/10.1126/science.1092472
4 P. H. Kussie, S. Gorina, V. Marechal, B. Elenbaas, J. Moreau, A. J. Levine, and N. P. Pavletich, Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain, Science 274(5289), 948 (1996)
https://doi.org/10.1126/science.274.5289.948
5 P. Chène, Inhibiting the p53-MDM2 interaction: an important target for cancer therapy, Nat. Rev. Cancer 3(2), 102 (2003)
https://doi.org/10.1038/nrc991
6 M. R. Arkin and J. A. Wells, Small-molecule inhibitors of protein-protein interactions progressing towards the dream, Nat. Rev. Drug Discov. 3(4), 301 (2004)
https://doi.org/10.1038/nrd1343
7 D. C. Fry and L. T. Vassilev, Targeting protein-protein interactions for cancer therapy, J. Mol. Med. (Berl.) 83(12), 955 (2005)
https://doi.org/10.1007/s00109-005-0705-x
8 M. Bista, S. Wolf, K. Khoury, K. Kowalska, Y. Huang, E. Wrona, M. Arciniega, G. M. Popowicz, T. A. Holak, and A. Dömling, Transient protein states in designing inhibitors of the p53-MDM2 interaction, Structure 21(12), 2143 (2013)
https://doi.org/10.1016/j.str.2013.09.006
9 K. K. Hoe, C. S. Verma, and D. P. Lane, Drugging the p53 pathway: Understanding the route to clinical efficacy, Nat. Rev. Drug Discov. 13(3), 217 (2014)
https://doi.org/10.1038/nrd4236
10 T. Saha, R. K. Kar, and G. Sa, Structural and sequential context of p53: A review of experimental and theoretical evidence, Prog. Biophys. Mol. Biol. 117(2–3), 250 (2015)
https://doi.org/10.1016/j.pbiomolbio.2014.12.002
11 S. Tovar, B. Graves, K. Packman, Z. Filipovic, B. H. M. Xia, C. Tardell, R. Garrido, E. Lee, K. Kolinsky, K. H. To, M. Linn, F. Podlaski, P. Wovkulich, B. Vu, and L. T. Vassilev, MDM2 small-molecule antagonist RG7112 activates p53 signaling and regresses human tumors in preclinical cancer models, Cancer Res. 73(8), 2587 (2013)
https://doi.org/10.1158/0008-5472.CAN-12-2807
12 L. Y. Qin, F. Yang, C. Zhou, Y. Chen, H. Zhang, and Z. Su, Efficient reactivation of p53 in cancer cells by a dual MDMX/MDM2 inhibitor, J. Am. Chem. Soc. 136(52), 18023 (2014)
https://doi.org/10.1021/ja509223m
13 U. M. Moll and O. Petrenko, The MDM2-p53 interaction, Mol. Cancer Res. 1, 1001 (2003)
14 R. Stad, N. A. Little, D. P. Xirodimas, R. Frenk, A. J. van der Eb, D. P. Lane, M. K. Saville, and A. G. Jochemsen, MDMX stabilizes p53 and MDM2 via two distinct mechanisms, EMBO Rep. 2(11), 1029 (2001)
https://doi.org/10.1093/embo-reports/kve227
15 S. Shangary and S. Wang, Small-molecule inhibitors of the MDM2-p53 protein-protein interaction to reactivate p53 function: A novel approach for cancer therapy, Annu. Rev. Pharmacol. Toxicol. 49(1), 223 (2009)
https://doi.org/10.1146/annurev.pharmtox.48.113006.094723
16 M. D. M. AbdulHameed, A. Hamza, and C. G. Zhan, Microscopic modes and free energies of 3- phosphoinositide-dependent kinase-1 (PDK1) binding with celecoxib and other inhibitors, J. Phys. Chem. B 110(51), 26365 (2006)
https://doi.org/10.1021/jp065207e
17 G. Popowicz, A. Czarna, and T. Holak, Structure of the human Mdmx protein bound to the p53 tumor suppressor transactivation domain, Cell Cycle 7(15), 2441 (2008)
https://doi.org/10.4161/cc.6365
18 B. Anil, C. Riedinger, J. A. Endicott, and M. E. M. Noble, The structure of an MDM2-Nutlin-3a complex solved by the use of a validated MDM2 surface-entropy reduction mutant, Acta Crystallogr. D Biol. Crystallogr. 69(8), 1358 (2013)
https://doi.org/10.1107/S0907444913004459
19 W. J. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein, Comparison of simple potential functions for simulating liquid water, J. Chem. Phys. 79(2), 926 (1983)
https://doi.org/10.1063/1.445869
20 W. Humphrey, A. Dalke, and K. Schulten, VMD: Visual molecular dynamics, J. Mol. Graph. 14(1), 33 (1996)
https://doi.org/10.1016/0263-7855(96)00018-5
21 J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R. D. Skeel, L. Kalé, and K. Schulten, Scalable molecular dynamics with NAMD, J. Comput. Chem. 26(16), 1781 (2005)
https://doi.org/10.1002/jcc.20289
22 A. D. Jr MacKerell, D. Bashford, M. Bellott, R. L. Jr Dunbrack, J. D. Evanseck, et al, All-atom empirical potential for molecular modeling and dynamics studies of proteins, J. Phys. Chem. 102(18), 3586 (1998)
https://doi.org/10.1021/jp973084f
23 S. Shangary, D. Qin, D. McEachern, M. Liu, R. S. Miller, S. Qiu, Z. Nikolovska-Coleska, K. Ding, G. Wang, J. Chen, D. Bernard, J. Zhang, Y. Lu, Q. Gu, R. B. Shah, K. J. Pienta, X. Ling, S. Kang, M. Guo, Y. Sun, D. Yang, and S. Wang, Temporal activation of p53 by a specific MDM2 inhibitor is selectively toxic to tumors and leads to complete tumor growth inhibition, Proc. Natl. Acad. Sci. USA 105(10), 3933 (2008)
https://doi.org/10.1073/pnas.0708917105
24 B. Hu, D. M. Gilkes, B. Farooqi, S. M. Sebti, and J. Chen, MDMX overexpression prevents p53 activation by the MDM2 inhibitor nutlin, J. Biol. Chem. 281(44), 33030 (2006)
https://doi.org/10.1074/jbc.C600147200
25 N. A. Laurie, S. L. Donovan, C. S. Shih, J. Zhang, N. Mills, C. Fuller, A. Teunisse, S. Lam, Y. Ramos, A. Mohan, D. Johnson, M. Wilson, C. Rodriguez-Galindo, M. Quarto, S. Francoz, S. M. Mendrysa, R. Kiplin Guy, J. C. Marine, A. G. Jochemsen, and M. A. Dyer, Inactivation of the p53 pathway in retinoblastoma, Nature 444(7115), 61 (2006)
https://doi.org/10.1038/nature05194
26 V. Hariharan and W. O. Hancock, Insights into the mechanical properties of the kinesin neck linker domain from sequence analysis and molecular dynamics simulations, Cell. Mol. Bioeng. 2(2), 177 (2009)
https://doi.org/10.1007/s12195-009-0059-5
27 J. D. Oliner, K. W. Kinzler, P. S. Meltzer, D. L. George, and B. Vogelstein, Amplification of a gene encoding a p53-associated protein in human sarcomas, Nature 358(6381), 80 (1992)
https://doi.org/10.1038/358080a0
28 J. D. Oliner, J. A. Pietenpol, S. Thiagalingam, J. Gyuris, K. W. Kinzler, and B. Vogelstein, Oncoprotein MDM2 conceals the activation domain of tumour suppressor p53, Nature 362(6423), 857 (1993)
https://doi.org/10.1038/362857a0
29 S. M. Abdur Rauf, H. Takaba, C. A. Del Carpio, and A. Miyamoto, How Nutlin-3 disrupts the MDM2–p53 interaction: A theoretical investigation, Med. Chem. Res. 23(4), 1998 (2014)
https://doi.org/10.1007/s00044-013-0792-0
30 M. A. McCoy, J. J. Gesell, M. M. Senior, and D. F. Wyss, Flexible lid to the p53-binding domain of human MDM2: Implications for p53 regulation, Proc. Natl. Acad. Sci. USA 100(4), 1645 (2003)
https://doi.org/10.1073/pnas.0334477100
31 S. A. Showalter, L. Bruschweiler-Li, E. Johnson, F. Zhang, and R. Brüschweiler, quantitative lid dynamics of MDM2 reveals differential ligand binding modes of the p53-binding cleft, J. Am. Chem. Soc. 130(20), 6472 (2008)
https://doi.org/10.1021/ja800201j
32 C. Y. Zhan, K. Varney, W. Y. Yuan, L. Zhao, and W. Lu, Interrogation of MDM2 phosphorylation in p53 activation using native chemical ligation: The functional role of Ser17 phosphorylation in MDM2 reexamined, J. Am. Chem. Soc. 134(15), 6855 (2012)
https://doi.org/10.1021/ja301255n
33 A. C. Joerger and A. R. Fersht, Structural biology of the tumor suppressor p53, Annu. Rev. Biochem. 77(1), 557 (2008)
https://doi.org/10.1146/annurev.biochem.77.060806.091238
34 K. M. ElSawy, C. S. Verma, T. L. Joseph, D. P. Lane, R. Twarock, and L. Caves, On the interaction mechanisms of a p53 peptide and nutlin with the MDM2 and MDMX proteins: A Brownian dynamics study, Cell Cycle 12(3), 394 (2013)
https://doi.org/10.4161/cc.23511
35 L. Hernychova, P. Man, C. Verma, J. Nicholson, C.A. Sharma, E. Ruckova, J. Y. Teo, K. Ball, B. Vojtesek, and T. R. Hupp, Identification of a second Nutlin-3 responsive interaction site in the N-terminal domain of MDM2 using hydrogen/deuterium exchange mass spectrometry, Proteomics 13(16), 2512 (2013)
https://doi.org/10.1002/pmic.201300029
36 K. Puszynski, A. Gandolfi, and A. d’Onofrio, The pharmacodynamics of the p53-MDM2 targeting drug nutlin: The role of gene-switching noise, PLOS Comput. Biol. 10(12), e1003991 (2014)
https://doi.org/10.1371/journal.pcbi.1003991
37 S. X. Liu, Y. Z. Geng, and S. W. Yan, Researches on inhibitors of p53-MDM2 interaction, Prog. Biochem. Biophys. (to be published)
38 B. Liu, S. W. Yan, and X. F. Gao, Noise amplification in human tumor suppression following gamma irradiation, PLoS One 6(8), e22487 (2011)
https://doi.org/10.1371/journal.pone.0022487
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed