Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2017, Vol. 12 Issue (3): 126301   https://doi.org/10.1007/s11467-017-0668-8
  本期目录
Role of disorder in determining the vibrational properties of mass-spring networks
Yunhuan Nie1, Hua Tong1,2, Jun Liu1, Mengjie Zu1, Ning Xu1()
1. CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, Hefei 230026, China
2. Institute of Industrial Science, University of Tokyo, Meguro-ku, Tokyo 153-8505, Japan
 全文: PDF(826 KB)  
Abstract

By introducing four fundamental types of disorders into a two-dimensional triangular lattice separately, we determine the role of each type of disorder in the vibration of the resulting mass-spring networks. We are concerned mainly with the origin of the boson peak and the connection between the boson peak and the transverse Ioffe–Regel limit. For all types of disorders, we observe the emergence of the boson peak and Ioffe–Regel limits. With increasing disorder, the boson peak frequency ωBP, transverse Ioffe–Regel frequency ω I R T, and longitudinal Ioffe–Regel frequency ω I R L all decrease. We find that there are two ways for the boson peak to form: developing from and coexisting with (but remaining independent of) the transverse van Hove singularity without and with local coordination number fluctuation. In the presence of a single type of disorder, ω I R T ω B R, and ω I R T ω B P only when the disorder is sufficiently strong and causes spatial fluctuation of the local coordination number. Moreover, if there is no positional disorder, ω I R T ω I R L. Therefore, the argument that the boson peak is equivalent to the transverse Ioffe–Regel limit is not general. Our results suggest that both local coordination number and positional disorder are necessary for the argument to hold, which is actually the case for most disordered solids such as marginally jammed solids and structural glasses. We further combine two types of disorders to cause disorder in both the local coordination number and lattice site position. The density of vibrational states of the resulting networks resembles that of marginally jammed solids well. However, the relation between the boson peak and the transverse Ioffe–Regel limit is still indefinite and condition-dependent. Therefore, the interplay between different types of disorders is complicated, and more in-depth studies are required to sort it out.

Key wordsdisorder    boson peak    Ioffe–Regel limit    amorphous solid
收稿日期: 2016-12-21      出版日期: 2017-03-17
Corresponding Author(s): Ning Xu   
 引用本文:   
. [J]. Frontiers of Physics, 2017, 12(3): 126301.
Yunhuan Nie, Hua Tong, Jun Liu, Mengjie Zu, Ning Xu. Role of disorder in determining the vibrational properties of mass-spring networks. Front. Phys. , 2017, 12(3): 126301.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-017-0668-8
https://academic.hep.com.cn/fop/CN/Y2017/V12/I3/126301
1 C. Kittel, Introduction to Solid State Physics, John Wiley & Sons, Inc., 2005
2 N. W. Ashcroft and N. D. Mermin, Solid State Physics, Thomson Brooks/Cole, 1976
3 A. F. Ioffe and A. R. Regel, Non-crystalline, amorphous and liquid electronic semiconductors, Prog. Semicond. 4, 237 (1960)
4 T. Nakayama, K. Yakubo, and R. L. Orbach, Dynamical properties of fractal networks: Scaling, numerical simulations, and physical realizations, Rev. Mod. Phys. 66(2), 381 (1994)
https://doi.org/10.1103/RevModPhys.66.381
5 E. Duval, A. Boukenter, and T. Achibat, Vibrational dynamics and the structure of glasses, J. Phys.: Condens. Matter 2(51), 10227 (1990)
https://doi.org/10.1088/0953-8984/2/51/001
6 T. Keyes, Instantaneous normal mode approach to liquid state dynamics, J. Phys. Chem. A 101(16), 2921 (1997)
https://doi.org/10.1021/jp963706h
7 W. Schirmacher, G. Diezemann, and C. Ganter, Harmonic vibrational excitations in disordered solids and the “boson peak”, Phys. Rev. Lett. 81(1), 136 (1998)
https://doi.org/10.1103/PhysRevLett.81.136
8 J. W. Kantelhardt, S. Russ, and A. Bunde, Excess modes in the vibrational spectrum of disordered systems and the boson peak, Phys. Rev. B 63(6), 064302 (2001)
https://doi.org/10.1103/PhysRevB.63.064302
9 T. S. Grigera, V. Martin-Mayor, G. Parisi, and P. Verrocchio, Vibrations in glasses and Euclidean random matrix theory, J. Phys.: Condens. Matter 14(9), 2167 (2002)
https://doi.org/10.1088/0953-8984/14/9/306
10 T. S. Grigera, V. Martin-Mayor, G. Parisi, and P. Verrocchio, Phonon interpretation of the “boson peak” in supercooled liquids, Nature 422(6929), 289 (2003)
https://doi.org/10.1038/nature01475
11 V. L. Gurevich, D. A. Parshin, and H. R. Schober, Anharmonicity, vibrational instability, and the boson peak in glasses, Phys. Rev. B 67(9), 094203 (2003)
https://doi.org/10.1103/PhysRevB.67.094203
12 A. P. Sokolov, U. Buchenau, W. Steffen, B. Frick, and A. Wischnewski, Comparison of Raman- and neutronscattering data for glass-forming systems, Phys. Rev. B 52(14), R9815 (1995)
https://doi.org/10.1103/PhysRevB.52.R9815
13 J. Wuttke, W. Petry, G. Coddens, and F. Fujara, Fast dynamics of glass-forming glycerol, Phys. Rev. E 52(4), 4026 (1995)
https://doi.org/10.1103/PhysRevE.52.4026
14 P. Lunkenheimer, U. Schneider, R. Brand, and A. Loid, Glassy dynamics, Contemp. Phys. 41(1), 15 (2000)
https://doi.org/10.1080/001075100181259
15 T. Nakayama, Boson peak and terahertz frequency dynamics of vitreous silica, Rep. Prog. Phys. 65(8), 1195 (2002)
https://doi.org/10.1088/0034-4885/65/8/203
16 W. A. Phillips (Ed.), Amorphous Solids: Low Temperature Properties, Berlin: Springer-Verlag, 1981
17 N. Xu, M. Wyart, A. J. Liu, and S. R. Nagel, Excess vibrational modes and the boson peak in model glasses, Phys. Rev. Lett. 98(17), 175502 (2007)
https://doi.org/10.1103/PhysRevLett.98.175502
18 M. Wyart, On the rigidity of amorphous solids, Ann. Phys. 30(3), 1 (2005)
https://doi.org/10.1051/anphys:2006003
19 H. Shintani and Y. Tanaka, Universal link between the boson peak and transverse phonons in glass, Nat. Mater. 7(11), 870 (2008)
https://doi.org/10.1038/nmat2293
20 Y. M. Beltukov, C. Fusco, D. A. Parshin, and A. Tanguy, Boson peak and Ioffe-Regel criterion in amorphous siliconlike materials: The effect of bond directionality, Phys. Rev. E 93(2), 023006 (2016)
https://doi.org/10.1103/PhysRevE.93.023006
21 U. Tanaka, Physical origin of the boson peak deduced from a two-order-parameter model of liquid, J. Phys. Soc. Jpn. 70(5), 1178 (2001)
https://doi.org/10.1143/JPSJ.70.1178
22 E. Duval, A. Boukenter, and T. Achibat, Vibrational dynamics and the structure of glasses, J. Phys.: Condens. Matter 2(51), 10227 (1990)
https://doi.org/10.1088/0953-8984/2/51/001
23 C. A. Angell, Formation of glasses from liquids and biopolymers, Science 267(5206), 1924 (1995)
https://doi.org/10.1126/science.267.5206.1924
24 L. E. Silbert, A. J. Liu, and S. R. Nagel, Vibrations and diverging length scales near the unjamming transition, Phys. Rev. Lett. 95(9), 098301 (2005)
https://doi.org/10.1103/PhysRevLett.95.098301
25 E. DeGiuli, A. Laversanne-Finot, G. Düring, E. Lerner, and M. Wyart, Effects of coordination and pressure on sound attenuation, boson peak and elasticity in amorphous solids, Soft Matter 10(30), 5628 (2014)
https://doi.org/10.1039/C4SM00561A
26 W. Schirmacher, G. Ruocco, and T. Scopigno, Acoustic attenuation in glasses and its relation with the boson peak, Phys. Rev. Lett. 98(2), 025501 (2007)
https://doi.org/10.1103/PhysRevLett.98.025501
27 W. Schirmacher, Thermal conductivity of glassy materials and the “boson peak”, Europhys. Lett. 73(6), 892 (2006)
https://doi.org/10.1209/epl/i2005-10471-9
28 A. Ferrante, E. Pontecorvo, G. Cerullo, A. Chiasera, G. Ruocco, W. Schirmacher, and T. Scopigno, Acoustic dynamics of network-forming glasses at mesoscopic wavelengths, Nat. Commun. 4, 1793 (2013)
https://doi.org/10.1038/ncomms2826
29 F. Léonforte, A. Tanguy, J. P. Wittmer, and J. L. Barrat, Inhomogeneous elastic response of silica glass, Phys. Rev. Lett. 97(5), 055501 (2006)
https://doi.org/10.1103/PhysRevLett.97.055501
30 G. Monaco and S. Mossa, Anomalous properties of the acoustic excitations in glasses on the mesoscopic length scale, Proc. Natl. Acad. Sci. USA 106(40), 16907 (2009)
https://doi.org/10.1073/pnas.0903922106
31 C. A. Angell, Y. Z. Yue, L. M. Wang, J. R. D. Copley, S. Borick, and S. Mossa, Potential energy, relaxation, vibrational dynamics and the boson peak, of hyperquenched glasses, J. Phys.: Condens. Matter 15(11), S1051 (2003)
https://doi.org/10.1088/0953-8984/15/11/327
32 D. A. Parshin, H. R. Schober, and V. L. Gurevich, Vibrational instability, two-level systems, and the boson peak in glasses, Phys. Rev. B 76(6), 064206 (2007)
https://doi.org/10.1103/PhysRevB.76.064206
33 L. Wang and N. Xu, Probing the glass transition from structural and vibrational properties of zerotemperature glasses, Phys. Rev. Lett. 112(5), 055701 (2014)
https://doi.org/10.1103/PhysRevLett.112.055701
34 S. Singh, M. D. Ediger, and J. J. de Pablo, Ultrastable glasses from in silico vapour deposition, Nat. Mater. 12(2), 139 (2013)
https://doi.org/10.1038/nmat3521
35 S. N. Taraskin, Y. L. Loh, G. Natarajan, and S. R. Elliott, Origin of the boson peak in systems with lattice disorder, Phys. Rev. Lett. 86(7), 1255 (2001)
https://doi.org/10.1103/PhysRevLett.86.1255
36 A. I. Chumakov, G. Monaco, A. Monaco, W. A. Crichton, A. Bosak, R. Rüffer, A. Meyer, F. Kargl, L. Comez, D. Fioretto, H. Giefers, S. Roitsch, G. Wortmann, M. H. Manghnani, A. Hushur, Q. Williams, J. Balogh, K. Parliński, P. Jochym, and P. Piekarz, Equivalence of the boson peak in glasses to the transverse acoustic van hove singularity in crystals, Phys. Rev. Lett. 106(22), 225501 (2011)
https://doi.org/10.1103/PhysRevLett.106.225501
37 H. Tong, P. Tan, and N. Xu, From crystals to disordered crystals: A hidden order-disorder transition, Sci. Rep. 5, 15378 (2015)
https://doi.org/10.1038/srep15378
38 A. J. Liu and S. R. Nagel, Nonlinear dynamics: Jamming is not just cool any more, Nature 396(6706), 21 (1998)
https://doi.org/10.1038/23819
39 A. J. Liu and S. R. Nagel, The jamming transition and the marginally jammed solid, Annu. Rev. Condens. Matter Phys. 1(1), 347 (2010)
https://doi.org/10.1146/annurev-conmatphys-070909-104045
40 M. van Hecke, Jamming of soft particles: Geometry, mechanics, scaling and isostaticity, J. Phys.: Condens. Matter 22(3), 033101 (2010)
https://doi.org/10.1088/0953-8984/22/3/033101
41 N. Xu, Mechanical, vibrational, and dynamical properties of amorphous systems near jamming, Front. Phys. 6(1), 109 (2011)
https://doi.org/10.1007/s11467-010-0102-y
42 C. S. O’Hern, L. E. Silbert, A. J. Liu, and S. R. Nagel, Jamming at zero temperature and zero applied stress: The epitome of disorder, Phys. Rev. E 68(1), 011306 (2003)
https://doi.org/10.1103/PhysRevE.68.011306
43 S. Torquato and F. H. Stillinger, Jammed hard-particle packings: From Kepler to Bernal and beyond, Rev. Mod. Phys. 82(3), 2633 (2010)
https://doi.org/10.1103/RevModPhys.82.2633
44 G. Parisi and F. Zamponi, Mean-field theory of hard sphere glasses and jamming, Rev. Mod. Phys. 82(1), 789 (2010)
https://doi.org/10.1103/RevModPhys.82.789
45 M. Müller and M. Wyart, Marginal stability in structural, spin, and electron glasses, Annu. Rev. Condens. Matter Phys. 6(1), 177 (2015)
https://doi.org/10.1146/annurev-conmatphys-031214-014614
46 M. Wyart, L. E. Silbert, S. R. Nagel, and T. A. Witten, Effects of compression on the vibrational modes of marginally jammed solids, Phys. Rev. E 72(5), 051306 (2005)
https://doi.org/10.1103/PhysRevE.72.051306
47 M. Wyart, S. R. Nagel, and T. A. Witten, Geometric origin of excess low-frequency vibrational modes in weakly connected amorphous solids, Europhys. Lett. 72(3), 486 (2005)
https://doi.org/10.1209/epl/i2005-10245-5
48 H. Tong and N. Xu, Order parameter for structural heterogeneity in disordered solids, Phys. Rev. E 90, 010401(R) (2014)
49 https://cmor.rice.edu/
50 X. Wang, W. Zheng, L. Wang, and N. Xu, Disordered solids without well-defined transverse phonons: the nature of hard-sphere glasses, Phys. Rev. Lett. 114(3), 035502 (2015)
https://doi.org/10.1103/PhysRevLett.114.035502
51 J. P. Hansen and I. R. McDonald, Theory of Simple Liquids, Amsterdam: Elsevier, 1986
52 J. Liu, Y. Nie, and N. Xu (in preparation)
53 E. Bitzek, P. Koskinen, F. Gahler, M. Moseler, and P. Gumbsch, Structural relaxation made simple, Phys. Rev. Lett. 97(17), 170201 (2006)
https://doi.org/10.1103/PhysRevLett.97.170201
54 E. D. Cubuk, S. S. Schoenholz, J. M. Rieser, B. D. Malone, J. Rottler, D. J. Durian, E. Kaxiras, and A. J. Liu, Identifying structural flow defects in disordered solids using machine-learning methods, Phys. Rev. Lett. 114(10), 108001 (2015)
https://doi.org/10.1103/PhysRevLett.114.108001
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed