Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2017, Vol. 12 Issue (3): 124205   https://doi.org/10.1007/s11467-017-0673-y
  本期目录
Spectral blueshift as a three-dimensional structure-ordering process
Jun-Ying Huang1,2(), Zu-Hui Wu1,2, Ji-Ping Huang1,2()
1. Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory of Micro and Nano Photonic Structures (MOE), Fudan University, Shanghai 200433, China
2. Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
 全文: PDF(1339 KB)  
Abstract

The transmission spectra of a TiO2-silicone oil suspension in an increasing external electric field are studied. As the electric field increases, the structure of the suspension changes from a disordered one to an ordered one. Interestingly, the transmission spectra blueshift in this structure-ordering process. Furthermore, the relative transmission spectra exhibit Fano-like asymmetric line shapes. The deviation ratio of each asymmetric line shape increases monotonously as the disorder of the suspension decreases. We suggest that this blueshift phenomenon can be used to characterize the disorder strength of threed-imensional systems.

Key wordsdisordered medium    light propagation    transmission spectrum    blueshift
收稿日期: 2016-10-10      出版日期: 2017-05-31
Corresponding Author(s): Jun-Ying Huang,Ji-Ping Huang   
 引用本文:   
. [J]. Frontiers of Physics, 2017, 12(3): 124205.
Jun-Ying Huang, Zu-Hui Wu, Ji-Ping Huang. Spectral blueshift as a three-dimensional structure-ordering process. Front. Phys. , 2017, 12(3): 124205.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-017-0673-y
https://academic.hep.com.cn/fop/CN/Y2017/V12/I3/124205
1 M.Born and E.Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th Ed., Cambridge: Academic Press, 1999
https://doi.org/10.1017/CBO9781139644181
2 Q.Gong and X.Hu, Photonic Crystals: Principles and Applications, Pan Standford: Academic Press, 2014
3 J. Y.Huang and L. W.Zhou, Exceptional enhancement of localization effect in a one-dimensional multilayer system with destructive weak disorder strength, Opt. Lett.36(7), 1305 (2011)
https://doi.org/10.1364/OL.36.001305
4 D. S.Wiersma, P.Bartolini, A.Lagendijk, and R.Righini, Localization of light in a disordered medium, Nature390(6661), 671 (1997)
https://doi.org/10.1038/37757
5 S.Zhang,J.Park, V.Milner, and A. Z.Genack, Photon delocalization transition in dimensional crossover in layered media, Phys. Rev. Lett.101(18), 183901 (2008)
https://doi.org/10.1103/PhysRevLett.101.183901
6 A. A.Fernández-Marín, J. A.Méndez-Bermúdez, J.Carbonell, F.Cervera, J.Sánchez-Dehesa, and V. A.Gopar, Beyond Anderson localization in 1D: Anomalous localization of microwaves in random waveguides, Phys. Rev. Lett.113(23), 233901 (2014)
https://doi.org/10.1103/PhysRevLett.113.233901
7 L.Levi, M.Rechtsman, B.Freedman, T.Schwartz, O.Manela, and M.Segev, Disorder-enhanced transport in photonic quasi-crystals, Science332(6037), 1541 (2011)
https://doi.org/10.1126/science.1202977
8 T.Schwartz, G.Bartal, S.Fishman, and M.Segev, Transport and Anderson localization in disordered twodimensional photonic lattices, Nature446(7131), 52 (2007)
https://doi.org/10.1038/nature05623
9 Y.Lahini, A.Avidan, F.Pozzi, M.Sorel, R.Morandotti, D. N.Christodoulides, and Y.Silberberg, Anderson localization and nonlinearity in one-dimensional disordered photonic lattices, Phys. Rev. Lett.100(1), 013906 (2008)
https://doi.org/10.1103/PhysRevLett.100.013906
10 Y.Lahini, R.Pugatch, F.Pozzi, M.Sorel, R.Morandotti, N.Davidson, and Y.Silberberg, Observation of a localization transition in quasiperiodic photonic lattices, Phys. Rev. Lett.103(1), 013901 (2009)
https://doi.org/10.1103/PhysRevLett.103.013901
11 P.Ni, P.Zhang, X.Qi, J.Yang, Z.Chen, and W.Man, Light localization and nonlinear beam transmission in specular amorphous photonic lattices, Opt. Express24(3), 2420 (2016)
https://doi.org/10.1364/OE.24.002420
12 P.Sebbah, B.Hu, J. M.Klosner, and A. Z.Genack, Extended quasimodes within nominally localized random waveguides, Phys. Rev. Lett.96(18), 183902 (2006)
https://doi.org/10.1103/PhysRevLett.96.183902
13 K. Y.Bliokh, Y. P.Bliokh, V.Freilikher, A. Z.Genack, B.Hu, and P.Sebbah, Localized modes in open onedimensional dissipative random systems, Phys. Rev. Lett.97(24), 243904 (2006)
https://doi.org/10.1103/PhysRevLett.97.243904
14 I. V.Shadrivov, K. Y.Bliokh, Y. P.Bliokh, V.Freilikher, and Y. S.Kivshar, Bistability of Anderson localized states in nonlinear random media, Phys. Rev. Lett.104(12), 123902 (2010)
https://doi.org/10.1103/PhysRevLett.104.123902
15 J.Bertolotti, S.Gottardo, D. S.Wiersma, M.Ghulinyan, and L.Pavesi, Optical necklace states in Anderson localized 1D systems, Phys. Rev. Lett.94(11), 113903 (2005)
https://doi.org/10.1103/PhysRevLett.94.113903
16 M.Störzer, P.Gross, C. M.Aegerter, and G.Maret, Observation of the critical regime near Anderson localization of light, Phys. Rev. Lett.96(6), 063904 (2006)
https://doi.org/10.1103/PhysRevLett.96.063904
17 J.Wang and A. Z.Genack, Transport through modes in random media, Nature471(7338), 345 (2011)
https://doi.org/10.1038/nature09824
18 T.Sperling, W.Bührer, C. M.Aegerter, and G.Maret, Direct determination of the transition to localization of light in three dimensions, Nat. Photonics7(1), 48 (2012)
https://doi.org/10.1038/nphoton.2012.313
19 A. N.Poddubny, M. V.Rybin, M. F.Limonov, and Y. S.Kivshar, Fano interference governs wave transport in disordered systems, Nat. Commun.3, 914 (2012)
https://doi.org/10.1038/ncomms1924
20 J.Topolancik, B.Ilic, and F.Vollmer, Experimental observation of strong photon localization in disordered photonic crystal waveguides, Phys. Rev. Lett.99(25), 253901 (2007)
https://doi.org/10.1103/PhysRevLett.99.253901
21 E.Lidorikis, M. M.Sigalas, E. N.Economou, and C. M.Soukoulis, Gap deformation and classical wave localization in disordered two-dimensional photonic-band-gap materials, Phys. Rev. B61(20), 13458 (2000)
https://doi.org/10.1103/PhysRevB.61.13458
22 J. Y.Huang, B. Q.Dong, and L. W.Zhou, Non-uniform ensembles of diverse resonances in one-dimensional layered media, Opt. Lett.36(13), 2477 (2011)
https://doi.org/10.1364/OL.36.002477
23 Z.Shi, M.Davy, and A. Z.Genack, Statistics and control of waves in disordered media, Opt. Express23(9), 12293 (2015)
https://doi.org/10.1364/OE.23.012293
24 P. W.Anderson, Absence of diffusion in certain random lattices, Phys. Rev.109(5), 1492 (1958)
https://doi.org/10.1103/PhysRev.109.1492
25 H.Cao, Y. G.Zhao, S. T.Ho, E. W.Seelig, Q. H.Wang, and R. P. H.Chang, Random laser action in semiconductor powder, Phys. Rev. Lett.82(11), 2278 (1999)
https://doi.org/10.1103/PhysRevLett.82.2278
26 C.Toninelli, E.Vekris, G. A.Ozin, S.John, and D. S.Wiersma, Exceptional reduction of the diffusion constant in partially disordered photonic crystals, Phys. Rev. Lett.101(12), 123901 (2008)
https://doi.org/10.1103/PhysRevLett.101.123901
27 M. V.Rybin, A. B.Khanikaev, M.Inoue, K. B.Samusev, M. J.Steel, G.Yushin, and M. F.Limonov, Fano resonance between Mie and Bragg scattering in phononic crystals, Phys. Rev. Lett.103(2), 023901 (2009)
https://doi.org/10.1103/PhysRevLett.103.023901
28 U.Fano,Effect of configuration interaction on intensities and phase shifts, Phys. Rev.124(6), 1866 (1961)
https://doi.org/10.1103/PhysRev.124.1866
29 M. F.Smith, K.Setwong, R.Tongpool, D.Onkaw, S.Na-phattalung, S.Limpijumnong, and S.Rujirawat, Identification of bulk and surface sulfur impurities in TiO2 by synchrotron X-ray absorption near edge structure, Appl. Phys. Lett.91(14), 142107 (2007)
https://doi.org/10.1063/1.2793627
30 W.Wen, X.Huang, and P.Sheng, Electrorheological fluids: Structures and mechanisms, Soft Matter4(2), 200 (2008)
https://doi.org/10.1039/B710948M
31 T.Chen, R. N.Zitter, and R.Tao, Laser diffraction determination of the crystalline structure of an electrorheological fluid, Phys. Rev. Lett.68(16), 2555 (1992)
https://doi.org/10.1103/PhysRevLett.68.2555
32 C. F.Bohren and D. R.Huffman, Absorption and Scattering of Light by Small Particles, New York:Wiley, 1983, page 118
33 W. J.Tian, M. K.Liu, and J. P.Huang, Origin of the reduced attracting force between a rotating dielectric particle and a stationary one, Phys. Rev. E75(2), 021401 (2007)
https://doi.org/10.1103/PhysRevE.75.021401
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed