Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2017, Vol. 12 Issue (6): 128907   https://doi.org/10.1007/s11467-017-0674-x
  本期目录
Joint multifractal analysis based on wavelet leaders
Zhi-Qiang Jiang1,2,3(),Yan-Hong Yang1,2,3,Gang-Jin Wang3,4(),Wei-Xing Zhou1,2,5()
1. School of Business, East China University of Science and Technology, Shanghai 200237, China
2. Research Center for Econophysics, East China University of Science and Technology, Shanghai 200237, China
3. Department of Physics and Center for Polymer Studies, Boston University, Boston, MA 02215, USA
4. Business School and Center of Finance and Investment Management, Hunan University, Changsha 410082, China
5. Department of Mathematics, East China University of Science and Technology, Shanghai 200237, China
 全文: PDF(3059 KB)  
Abstract

Mutually interacting components form complex systems and these components usually have longrange cross-correlated outputs. Using wavelet leaders, we propose a method for characterizing the joint multifractal nature of these long-range cross correlations; we call this method joint multifractal analysis based on wavelet leaders (MF-X-WL). We test the validity of the MF-X-WL method by performing extensive numerical experiments on dual binomial measures with multifractal cross correlations and bivariate fractional Brownian motions (bFBMs) with monofractal cross correlations. Both experiments indicate that MF-X-WL is capable of detecting cross correlations in synthetic data with acceptable estimating errors. We also apply the MF-X-WL method to pairs of series from financial markets (returns and volatilities) and online worlds (online numbers of different genders and different societies) and determine intriguing joint multifractal behavior.

Key wordsjoint multifractal analysis    wavelet leader    binomial measure    bivariate fractional Brownian motion    econophysics    online world
收稿日期: 2016-10-23      出版日期: 2017-03-17
Corresponding Author(s): Zhi-Qiang Jiang,Gang-Jin Wang,Wei-Xing Zhou   
 引用本文:   
. [J]. Frontiers of Physics, 2017, 12(6): 128907.
Zhi-Qiang Jiang,Yan-Hong Yang,Gang-Jin Wang,Wei-Xing Zhou. Joint multifractal analysis based on wavelet leaders. Front. Phys. , 2017, 12(6): 128907.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-017-0674-x
https://academic.hep.com.cn/fop/CN/Y2017/V12/I6/128907
1 B. Podobnik and H. E. Stanley, Detrended crosscorrelation analysis: A new method for analyzing two nonstationary time series, Phys. Rev. Lett. 100(8), 084102 (2008)
https://doi.org/10.1103/PhysRevLett.100.084102
2 P. Grassberger, Generalized dimensions of strange attractors, Phys. Lett. A 97(6), 227 (1983)
https://doi.org/10.1016/0375-9601(83)90753-3
3 P. Grassberger and I. Procaccia, Measuring the strangeness of strange attractors, Physica D 9(1–2), 189 (1983)
https://doi.org/10.1016/0167-2789(83)90298-1
4 T. C. Halsey, M. H. Jensen, L. P. Kadanoff, I. Procaccia, and B. I. Shraiman, Fractal measures and their singularities: The characterization of strange sets, Phys. Rev. A 33(2), 1141 (1986)
https://doi.org/10.1103/PhysRevA.33.1141
5 A. N. Kolmogorov, A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number, J. Fluid Mech. 13(01), 82 (1962)
https://doi.org/10.1017/S0022112062000518
6 F. Anselmet, Y. Gagne, E. J. Hopfinger, and R. A. Antonia, High-order velocity structure functions in turbulent shear flows, J. Fluid Mech. 140, 63 (1984)
https://doi.org/10.1017/S0022112084000513
7 A. Castro e Silva and J. G. Moreira, Roughness exponents to calculate multi-affine fractal exponents, Physica A 235(3–4), 327 (1997)
8 R. O. Weber and P. Talkner, Spectra and correlations of climate data from days to decades, J. Geophys. Res. 106(D17), 20131 (2001)
https://doi.org/10.1029/2001JD000548
9 J. W. Kantelhardt, S. A. Zschiegner, E. Koscielny- Bunde, S. Havlin, A. Bunde, and H. E. Stanley, Multifractal detrended fluctuation analysis of nonstationary time series, Physica A 316(1–4), 87 (2002)
https://doi.org/10.1016/S0378-4371(02)01383-3
10 E. Alessio, A. Carbone, G. Castelli, and V. Frappietro, Second-order moving average and scaling of stochastic time series, Eur. Phys. J. B 27(2), 197 (2002)
https://doi.org/10.1140/epjb/e20020150
11 A. Carbone, G. Castelli, and H. E. Stanley, Timedependent Hurst exponent in financial time series, Physica A 344(1–2), 267 (2004)
https://doi.org/10.1016/j.physa.2004.06.130
12 A. Carbone, G. Castelli, and H. E. Stanley, Analysis of clusters formed by the moving average of a long-range correlated time series, Phys. Rev. E 69(2), 026105 (2004)
https://doi.org/10.1103/PhysRevE.69.026105
13 G. F. Gu and W. X. Zhou, Detrending moving average algorithm for multifractals, Phys. Rev. E 82(1), 011136 (2010)
https://doi.org/10.1103/PhysRevE.82.011136
14 C. Meneveau, K. R. Sreenivasan, P. Kailasnath, and M. S. Fan, Joint multifractal measures: Theory and applications to turbulence, Phys. Rev. A 41(2), 894 (1990)
https://doi.org/10.1103/PhysRevA.41.894
15 W. J. Xie, Z. Q. Jiang, G. F. Gu, X. Xiong, and W. X. Zhou, Joint multifractal analysis based on the partition function approach: Analytical analysis, numerical simulation and empirical application, New J. Phys. 17(10), 103020 (2015)
https://doi.org/10.1088/1367-2630/17/10/103020
16 J. Wang, P. J. Shang, and W. J. Ge, Multifractal crosscorrelation analysis based on statistical moments, Fractals 20(03n04), 271 (2012)
17 L. Kristoufek, Multifractal height cross-correlation analysis: A new method for analyzing long-range crosscorrelations, EPL 95(6), 68001 (2011)
https://doi.org/10.1209/0295-5075/95/68001
18 W. X. Zhou, Multifractal detrended cross-correlation analysis for two nonstationary signals, Phys. Rev. E 77(6), 066211 (2008)
https://doi.org/10.1103/PhysRevE.77.066211
19 A. Carbone and G. Castelli, Noise in complex systems and stochastic dynamics, Proc. SPIE 5114, 406 (2003)
20 S. Arianos and A. Carbone, Detrending moving average algorithm: A closed-form approximation of the scaling law, Physica A 382(1), 9 (2007)
https://doi.org/10.1016/j.physa.2007.02.074
21 A. Carbone, Algorithm to estimate the Hurst exponent of high-dimensional fractals, Phys. Rev. E 76(5), 056703 (2007)
https://doi.org/10.1103/PhysRevE.76.056703
22 A. Carbone and K. Kiyono, Detrending moving average algorithm: Frequency response and scaling performances, Phys. Rev. E 93(6), 063309 (2016)
https://doi.org/10.1103/PhysRevE.93.063309
23 Y. Tsujimoto, Y. Miki, S. Shimatani, and K. Kiyono, Fast algorithm for scaling analysis with higher-order detrending moving average method, Phys. Rev. E 93(5), 053304 (2016)
https://doi.org/10.1103/PhysRevE.93.053304
24 K. Kiyono and Y. Tsujimoto, Time and frequency domain characteristics of detrending-operation-based scaling analysis: Exact DFA and DMA frequency responses, Phys. Rev. E 94(1), 012111 (2016)
https://doi.org/10.1103/PhysRevE.94.012111
25 Z. Q. Jiang and W. X. Zhou, Multifractal detrending moving-average cross-correlation analysis, Phys. Rev. E 84(1), 016106 (2011)
https://doi.org/10.1103/PhysRevE.84.016106
26 P. Oświe¸cimk, S. Drożdż, M. Forczek, S. Jadach, and J. Kwapień, Detrended cross-correlation analysis consistently extended to multifractality, Phys. Rev. E 89(2), 023305 (2014)
https://doi.org/10.1103/PhysRevE.89.023305
27 J. Kwapień, P. Oświe¸cimka, and S. Drożdż, Detrended fluctuation analysis made flexible to detect range of cross-correlated fluctuations, Phys. Rev. E 92(5), 052815 (2015)
https://doi.org/10.1103/PhysRevE.92.052815
28 X. Y. Qian, Y. M. Liu, Z. Q. Jiang, B. Podobnik, W. X. Zhou, and H. E. Stanley, Detrended partial crosscorrelation analysis of two nonstationary time series influenced by common external forces, Phys. Rev. E 91(6), 062816 (2015)
https://doi.org/10.1103/PhysRevE.91.062816
29 Y. D. Wang, Y. Wei, and C. F. Wu, Cross-correlations between Chinese A-share and B-share markets, Physica A 389(23), 5468 (2010)
https://doi.org/10.1016/j.physa.2010.08.029
30 Y. D. Wang, Y. Wei, and C. F. Wu, Detrended fluctuation analysis on spot and futures markets of West Texas Intermediate crude oil, Physica A 390(5), 864 (2011)
https://doi.org/10.1016/j.physa.2010.11.017
31 G. J. Wang and C. Xie, Cross-correlations between the CSI 300 spot and futures markets, Nonlinear Dyn. 73(3), 1687 (2013)
https://doi.org/10.1007/s11071-013-0895-7
32 G. J. Wang and C. Xie, Cross-correlations between Renminbi and four major currencies in the Renminbi currency basket, Physica A 392(6), 1418 (2013)
https://doi.org/10.1016/j.physa.2012.11.035
33 F. Ma, Y. Wei, and D. S. Huang, Multifractal detrended cross-correlation analysis between the Chinese stock market and surrounding stock markets, Physica A 392(7), 1659 (2013)
https://doi.org/10.1016/j.physa.2012.12.010
34 D. H. Wang, Y. Y. Suo, X. W. Yu, and M. Lei, Price– volume cross-correlation analysis of CSI300 index futures, Physica A 392(5), 1172 (2013)
https://doi.org/10.1016/j.physa.2012.11.031
35 G. J. Wang, C. Xie, L. Y. He, and S. Chen, Detrended minimum-variance hedge ratio: A new method for hedge ratio at different time scales, Physica A 405, 70 (2014)
https://doi.org/10.1016/j.physa.2014.03.010
36 Y. Zhou and S. Chen, Cross-correlation analysis between Chinese TF contracts and treasury ETF based on high-frequency data, Physica A 443, 117 (2016)
https://doi.org/10.1016/j.physa.2015.09.078
37 M. Holschneider, On the wavelet transformation of fractal objects, J. Stat. Phys. 50(5–6), 963 (1988)
https://doi.org/10.1007/BF01019149
38 A. Arnéodo, G. Grasseau, and M. Holschneider, Wavelet transform of multifractals, Phys. Rev. Lett. 61(20), 2281 (1988)
https://doi.org/10.1103/PhysRevLett.61.2281
39 J. F. Muzy, E. Bacry, and A. Arnéodo, Wavelets and multifractal formalism for singular signals: Application to turbulence data, Phys. Rev. Lett. 67(25), 3515 (1991)
https://doi.org/10.1103/PhysRevLett.67.3515
40 Z. Q. Jiang, W. X. Zhou, and H. E. Stanley, Multifractal cross wavelet analysis, arXiv: 1610.09519 (2016)
41 L. Hudgins, C. A. Friehe, and M. E. Mayer, Wavelet transforms and atmopsheric turbulence, Phys. Rev. Lett. 71(20), 3279 (1993)
https://doi.org/10.1103/PhysRevLett.71.3279
42 D. Maraun and J. Kurths, Cross wavelet analysis: Significance testing and pitfalls, Nonlinear Process. Geophys. 11(4), 505 (2004)
https://doi.org/10.5194/npg-11-505-2004
43 L. Aguiar-Conraria and M. J. Soares, The continuous wavelet transform: Moving beyond uni- and bivariate analysis, J. Econ. Surv. 28(2), 344 (2014)
https://doi.org/10.1111/joes.12012
44 B. Lashermes, S. G. Roux, P. Abry, and S. Jaffard, Comprehensive multifractal analysis of turbulent velocity using the wavelet leaders, Eur. Phys. J. B 61(2), 201 (2008)
https://doi.org/10.1140/epjb/e2008-00058-4
45 E. Serrano and A. Figliola, Wavelet leaders: A new method to estimate the multifractal singularity spectra, Physica A 388(14), 2793 (2009)
https://doi.org/10.1016/j.physa.2009.03.043
46 H. Wendt, S. G. Roux, S. Jaffard, and P. Abry, Wavelet leaders and bootstrap for multifractal analysis of images, Signal Process. 89(6), 1100 (2009)
https://doi.org/10.1016/j.sigpro.2008.12.015
47 A. B. Chhabra and R. V. Jensen, Direct determination of the f(a) singularity spectrum, Phys. Rev. Lett. 62(12), 1327 (1989)
https://doi.org/10.1103/PhysRevLett.62.1327
48 C. Meneveau and K. R. Sreenivasan, Simple multifractal cascade model for fully developed turbulence, Phys. Rev. Lett. 59(13), 1424 (1987)
https://doi.org/10.1103/PhysRevLett.59.1424
49 F. Lavancier, A. Philippe, and D. Surgailis, Covariance function of vector self-similar processes, Stat. Probab. Lett. 79(23), 2415 (2009)
https://doi.org/10.1016/j.spl.2009.08.015
50 J.-F. Coeurjolly, P. Amblard, and S. Achard, On multivariate fractional Brownian motion and multivariate fractional Gaussian noise, Eur. Signal Process. Conf. 18, 1567 (2010)
51 P. O. Amblard, J. F. Coeurjolly, F. Lavancier, and A. Philippe, Basic properties of the multivariate fractional Brownian motion, Bull. Soc. Math. France, Sémin. Congr. 28, 65 (2013)
52 Z. Q. Jiang and W. X. Zhou, Scale invariant distribution and multifractality of volatility multipliers in stock markets, Physica A 381, 343 (2007)
https://doi.org/10.1016/j.physa.2007.03.015
53 Z. Q. Jiang, W. J. Xie, and W. X. Zhou, Testing the weak-form efficiency of the WTI crude oil futures market, Physica A 405, 235 (2014)
https://doi.org/10.1016/j.physa.2014.02.042
54 Z. Q. Jiang, F. Ren, G. F. Gu, Q. Z. Tan, and W. X. Zhou, Statistical properties of online avatar numbers in a massive multiplayer online role-playing game, Physica A 389(4), 807 (2010)
https://doi.org/10.1016/j.physa.2009.10.028
55 P. Oświe¸cimk, J. Kwapień, and S. Drożdż, Wavelet versus detrended fluctuation analysis of multifractal structures, Phys. Rev. E 74(1), 016103 (2006)
https://doi.org/10.1103/PhysRevE.74.016103
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed