Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2017, Vol. 12 Issue (5): 125201   https://doi.org/10.1007/s11467-017-0676-8
  本期目录
Coherent resonance of quantum plasmons in Stone–Wales defected graphene–silver nanowire hybrid system
Tong Liu (刘彤)1, Hong Zhang (张红)1,2(), Xin-Lu Cheng (程新路)2, Yang Xu (徐阳)1
1. College of Physical Science and Technology, Sichuan University, Chengdu 610064, China
2. Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064, China
 全文: PDF(3987 KB)  
Abstract

Defected graphene has a more important practical significance than graphene. Silver nanoparticles can modify the optical properties of defected graphene. We present herein a detailed theoretical analysis about the coherent resonance of quantum plasmons in the Stone–Wales (SW) defected graphene–silver nanowire hybrid system by using time-dependent density functional theory. The plasmon coherent effect is mainly attributed to the electromagnetic field coupling between the Stone–Wales defected graphene and silver nanowires. As a result, the optical response of the hybrid system exhibits a remarkable enhancement. Plasmon resonance, which depends on polarization and selectable tuning, is enhanced in wide frequency regions. Moreover, it reveals that the resonance frequency of an optical absorption spectrum depends on the space configuration of the SW defected graphene in the hybrid system. This investigation provides a better understanding of the plasmon enhancement effect used in a graphene-based photoelectric device. The study also offers an effective means of detecting the defects existing in graphene.

Key wordsquantum plasmons    coherent resonance    SW defected graphene    silver nanowires    hybrid system
收稿日期: 2016-09-02      出版日期: 2017-05-22
Corresponding Author(s): Hong Zhang (张红)   
 引用本文:   
. [J]. Frontiers of Physics, 2017, 12(5): 125201.
Tong Liu (刘彤), Hong Zhang (张红), Xin-Lu Cheng (程新路), Yang Xu (徐阳). Coherent resonance of quantum plasmons in Stone–Wales defected graphene–silver nanowire hybrid system. Front. Phys. , 2017, 12(5): 125201.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-017-0676-8
https://academic.hep.com.cn/fop/CN/Y2017/V12/I5/125201
1 S. A.Maier and H. A.Atwater, Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures, J. Appl. Phys. 98(1), 011101 (2005)
https://doi.org/10.1063/1.1951057
2 A.Karalis, E.Lidorikis, M.Ibanescu, J. D.Joannopoulos, and M.Soljačić, Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air, Phys. Rev. Lett.95(6), 063901 (2005)
https://doi.org/10.1103/PhysRevLett.95.063901
3 Y. C.Cao, R.Jin, and C. A.Mirkin, Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection, Science297(5586), 1536 (2002)
https://doi.org/10.1126/science.297.5586.1536
4 S. A.Maier, P. G.Kik, and H. A.Atwater, Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss, Appl. Phys. Lett.81(9), 1714 (2002)
https://doi.org/10.1063/1.1503870
5 L.Novotny and N.Van Hulst, Antennas for light, Nat. Photonics5(2), 83 (2011)
https://doi.org/10.1038/nphoton.2010.237
6 A.Gonzalez-Tudela, D.Martin-Cano, E.Moreno, L.Martin-Moreno, C.Tejedor, and F. J.Garcia-Vidal, Entanglement of two qubits mediated by one-dimensional plasmonic waveguides, Phys. Rev. Lett.106(2), 020501 (2011)
https://doi.org/10.1103/PhysRevLett.106.020501
7 W.Choi, I.Lahiri, R.Seelaboyina, and Y. S.Kang, Synthesis of graphene and its applications: A review, Crit. Rev. Solid State Mater. Sci.35(1), 52 (2010)
https://doi.org/10.1080/10408430903505036
8 F. J.Garcia de Abajo, Graphene nanophotonics, Science339(6122), 917 (2013)
https://doi.org/10.1126/science.1231119
9 F.Schwierz,Graphene transistors, Nat. Nanotechnol.5(7), 487 (2010)
https://doi.org/10.1038/nnano.2010.89
10 L.Liao, Y. C.Lin, M.Bao, R.Cheng, J.Bai, Y.Liu, Y.Qu, K. L.Wang, Y.Huang, and X.Duan, High-speed graphene transistors with a self-aligned nanowire gate, Nature467(7313), 305 (2010)
https://doi.org/10.1038/nature09405
11 F. H. L.Koppens, D. E.Chang, and F. J.Garcia de Abajo, Graphene plasmonics: A platform for strong light-matter interactions, Nano Lett.11(8), 3370 (2011)
https://doi.org/10.1021/nl201771h
12 A.Vakil and N.Engheta, Transformation optics using graphene, Science332(6035), 1291 (2011)
https://doi.org/10.1126/science.1202691
13 S.Thongrattanasiri, F. H. L.Koppens, and F. J.Garcia de Abajo, Complete optical absorption in periodically patterned graphene, Phys. Rev. Lett.108(4), 047401 (2012)
https://doi.org/10.1103/PhysRevLett.108.047401
14 J. H.Chen, C.Jang, S. D.Xiao, M.Ishigamiand, and M. S.Fuhrer, Intrinsic and extrinsic performance limits of graphene devices on SiO2, Nat. Nanotechnol.3(4), 206 (2008)
https://doi.org/10.1038/nnano.2008.58
15 K. S.Novoselov, A. K.Geim, S. V.Morozov, D.Jiang, et al., Electric field effect in atomically thin carbon films, Science306(5696), 666 (2004)
https://doi.org/10.1126/science.1102896
16 C. C.Neacsu, J.Dreyer, N.Behr, and M. B.Raschke, Scanning-probe Raman spectroscopy with single-molecule sensitivity, Phys. Rev. B73(19), 193406 (2006)
https://doi.org/10.1103/PhysRevB.73.193406
17 K.Zhang, H.Zhang, and C.Li, Coherent resonance of quantum plasmons in the graphene-gold cluster hybrid system, Phys. Chem. Chem. Phys.17(18), 12051 (2015)
https://doi.org/10.1039/C4CP05049E
18 M. D.Sonntag, J. M.Klingsporn, L. K.Garibay, J. M.Roberts, J. A.Dieringer, T.Seideman, K. A.Scheidt, L.Jensen, G. C.Schatz, and R. P. VanDuyne, Singlemolecule tip-enhanced Raman spectroscopy, J. Phys. Chem. C116(1), 478 (2012)
https://doi.org/10.1021/jp209982h
19 E. M. van S.Lantman, T.Deckert-Gaudig, A. J. G.Mank, V.Deckert, and B. M.Weckhuysen, Catalytic processes monitored at the nanoscale with tipenhanced Raman spectroscopy, Nat. Nanotechnol. 7(9), 583 (2012)
https://doi.org/10.1038/nnano.2012.131
20 R.Zhang, Y.Zhang, Z. C.Dong,S.Jiang, C.Zhang, L. G.Chen, L.Zhang, Y.Liao, J.Aizpurua, Y.Luo, J. L.Yang, and J. G.Hou, Chemical mapping of a single molecule by plasmon-enhanced Raman scattering, Nature498(7452), 82 (2013)
https://doi.org/10.1038/nature12151
21 T. W.Ebbesen and T.Takada, Topological and SP3 defect structures in nanotubes, Carbon33(7), 973 (1995)
https://doi.org/10.1016/0008-6223(95)00025-9
22 D.Wu, K.Yan, Y.Zhou, H.Wang, L.Lin, H.Peng, and Z.Liu, Plasmon-enhanced photothermoelectric conversion in chemical vapor deposited graphene p–n junctions, Chem. Soc. 135(30), 10926 (2013)
https://doi.org/10.1021/ja404890n
23 Y.Takatsuka,K.Takahagi, E.Sano, IIRyzh, and T.Otsuji, Gain enhancement in graphene terahertz amplifiers with resonant structures, J. Appl. Phys. 112(3), 033103 (2012)
https://doi.org/10.1063/1.4742998
24 Y.Liu, R.Cheng, L.Liao, H.Zhou, J.Bai, G.Liu, L.Liu, Y.Huang, and X.Duan, Plasmon resonance enhanced multicolour photodetection by graphene, Nat. Commun. 2, 579 (2011)
https://doi.org/10.1038/ncomms1589
25 A.Ferreira and N. M. R.Peres, Complete light absorption in graphene-metamaterial corrugated structures, Phys. Rev. B86(20), 205401 (2012)
https://doi.org/10.1103/PhysRevB.86.205401
26 Y.Li, H.Zhang, D. W.Yan, H. F.Yin, and X. L.Cheng, Secondary plasmon resonance in graphene nanostructures, Front. Phys. 10(1), 102 (2015)
https://doi.org/10.1007/s11467-014-0430-4
27 G.Bachelier, I.Russier-Antoine, E.Benichou, C.Jonin, N.DelFatti, F.Vallee, and P. F.Brevet, Fano profiles induced by near-field coupling in heterogeneous dimers of gold and silver nanoparticles, Phys. Rev. Lett. 101(19), 197401 (2008)
https://doi.org/10.1103/PhysRevLett.101.197401
28 L. V.Brown, H.Sobhani, J. B.Lassiter, P.Nordlander, and N. J.Halas, Heterodimers: Plasmonic properties of mismatched nanoparticle pairs, ACS Nano4(2), 819 (2010)
https://doi.org/10.1021/nn9017312
29 T. G.Habteyes, S.Dhuey, S.Cabrini, P. J.Schuck, and S. R.Leone, Theta-shaped plasmonic nanostructures: Bringing “dark” multipole plasmon resonances into action via conductive coupling, Nano Lett. 11(4), 1819 (2011)
https://doi.org/10.1021/nl200585b
30 J. J.Mock, R. T.Hill, A.Degiron, S.Zauscher, A.Chilkoti, and D. R.Smith, Distance-dependent plasmon resonant coupling between a gold nanoparticle and gold film, Nano Lett. 8(8), 2245 (2008)
https://doi.org/10.1021/nl080872f
31 M. M.Miller and A. A.Lazarides, Lazari des, A, Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment, J. Phys. Chem. B109(46), 21556 (2005)
https://doi.org/10.1021/jp054227y
32 T.Pakizeh and M.Käll, Unidirectional ultracompact optical nanoantennas, Nano Lett. 9(6), 2343 (2009)
https://doi.org/10.1021/nl900786u
33 P. K.Jain and M. A.El-Sayed, Plasmonic coupling in noble metal nanostructures, Chem. Phys. Lett. 487(4–6), 153 (2010)
https://doi.org/10.1016/j.cplett.2010.01.062
34 R.Zhang, Y.Zhang, Z. C.Dong, S.Jiang, C.Zhang, L. G.Chen, L.Zhang, Y.Liao, J.Aizpurua, Y.Luo, J. L.Yang, and J. G.Hou, Chemical mapping of a single molecule by plasmon-enhanced Raman scattering, Nature498(7452), 82 (2013)
https://doi.org/10.1038/nature12151
35 H. X.Xu, J.Aizpurua, M.Käll, and P. E.Apell, Electromagnetic contributions to single molecule sensitivity in surface-enhanced Raman scattering, Phys. Rev. E62(3), 4318 (2000)
https://doi.org/10.1103/PhysRevE.62.4318
36 J.Stadler, T.Schmid, and R.Zenobi, Nanoscale chemical imaging using top-illumination tip-enhanced Raman Spectroscopy, Nano Lett. 10(11), 4514 (2010)
https://doi.org/10.1021/nl102423m
37 S.Yoshizawa, H.Kim, T.Kawakami, Y.Nagai, T.Nakayama, X.Hu, Y.Hasegawa, and T.Uchihashi, Imaging Josephson vortices on the surface superconductor Si(111)−(7×3)−In, Phys. Rev. Lett. 113(24), 247004 (2014)
https://doi.org/10.1103/PhysRevLett.113.247004
38 M. A. L.Marques, A.Castro, G. F.Bertsch, and A.Rubio, Octopus: A first-principles tool for excited electron–ion dynamics, Comput. Phys. Commun. 151(1), 60 (2003)
https://doi.org/10.1016/S0010-4655(02)00686-0
39 N.Troullier and J. L.Martins, Efficient pseudopotentials for plane-wave calculations, Phys. Rev. B43, 1993 (1991)
https://doi.org/10.1103/PhysRevB.43.1993
40 D. M.Ceperley and B. J.Alder, Ground state of the electron gas by a stochastic method, Phys. Rev. Lett. 45(7), 566 (1980)
https://doi.org/10.1103/PhysRevLett.45.566
41 J.Yan, Z.Yuan, and S. W.Gao, End and central plasmon resonances in linear atomic chains, Phys. Rev. Lett. 98(21), 216602 (2007)
https://doi.org/10.1103/PhysRevLett.98.216602
42 D. C.Marinica,A. K.Kazansky, P.Nordlander, J.Aizpurua, and A. G.Borisov, Quantum plasmonics: Nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer, Nano Lett. 12(3), 1333 (2012)
https://doi.org/10.1021/nl300269c
43 Z. Y.Fang, Z.Liu, Y. M.Wang, P. M.Ajayan, P.Nordlander, and N. J.Halas, Graphene-antenna sandwich photodetector, Nano Lett. 12(7), 3808 (2012)
https://doi.org/10.1021/nl301774e
44 J.Niu, Y. J.Shin, Y.Lee, J.-H.Ahn, and H.Yang, Graphene induced tunability of the surface plasmon resonance, Appl. Phys. Lett. 100(6), 061116 (2012)
https://doi.org/10.1063/1.3683534
45 Y.Kobayashi, K.Fukui, T.Enoki, K.Kusakabe, and Y.Kaburagi, Observation of zigzag and armchair edges of graphite using scanning tunneling microscopy and spectroscopy, Phys. Rev. B71(19), 193406 (2005)
https://doi.org/10.1103/PhysRevB.71.193406
46 L.Brey and H. A.Fertig, Elementary electronic excitations in graphene nanoribbons, Phys. Rev. B75(12), 125434 (2007)
https://doi.org/10.1103/PhysRevB.75.125434
47 Y. W.Son, M. L.Cohen, and S. G.Louie, Energy gaps in graphene nanoribbons, Phys. Rev. Lett. 97(21), 216803 (2006)
https://doi.org/10.1103/PhysRevLett.97.216803
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed