Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2018, Vol. 13 Issue (1): 139801   https://doi.org/10.1007/s11467-017-0701-y
  本期目录
Traversable braneworld wormholes supported by astrophysical observations
Deng Wang1(), Xin-He Wang2()
1. Theoretical Physics Division, Chern Institute of Mathematics, Nankai University, Tianjin 300071, China
2. Department of Physics, Nankai University, Tianjin 300071, China
 全文: PDF(2451 KB)  
Abstract

In this study, we investigate the characteristics and properties of a traversable wormhole constrained by the current astrophysical observations in the framework of modified theories of gravity (MOG). As a concrete case, we study traversable wormhole space–time configurations in the Dvali–Gabadadze–Porrati (DGP) braneworld scenario, which are supported by the effects of the gravity leakage of extra dimensions. We find that the wormhole space–time structure will open in terms of the 2σconfidence level when we utilize the joint constraints supernovae (SNe) Ia+ observational Hubble parameter data (OHD) + Planck+ gravitational wave (GW) and z<0:2874. Furthermore, we obtain several model-independent conclusions, such as (i) the exotic matter threading the wormholes can be divided into four classes during the evolutionary processes of the universe based on various energy conditions; (ii) we can offer a strict restriction to the local wormhole space–time structure by using the current astrophysical observations; and (iii) we can clearly identify a physical gravitational resource for the wormholes supported by astrophysical observations, namely the dark energy components of the universe or equivalent space–time curvature effects from MOG. Moreover, we find that the strong energy condition is always violated at low redshifts.

Key wordsbraneworld model    traversable wormholes    astrophysical observations
收稿日期: 2017-01-05      出版日期: 2017-08-28
Corresponding Author(s): Deng Wang,Xin-He Wang   
 引用本文:   
. [J]. Frontiers of Physics, 2018, 13(1): 139801.
Deng Wang, Xin-He Wang. Traversable braneworld wormholes supported by astrophysical observations. Front. Phys. , 2018, 13(1): 139801.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-017-0701-y
https://academic.hep.com.cn/fop/CN/Y2018/V13/I1/139801
1 A. G.Riess, A. V.Filippenko, P.Challis, A.Clocchiatti, A.Diercks, P. M.Garnavich, R. L.Gilliland, C. J.Hogan, S.Jha, R. P.Kirshner, B.Leibundgut, M. M.Phillips, D.Reiss, B. P.Schmidt, R. A.Schommer, R. C.Smith, J.Spyromilio, C.Stubbs, N. B.Suntzeff, andJ.Tonry, Observational evidence from supernovae for an accelerating universe and a cosmological constant, Astron. J. 116(3), 1009 (1998)
https://doi.org/10.1086/300499
2 S.Perlmutter, M. S.Turner, and M.White, Constraining dark energy with SNe Ia and large scale structure, Phys. Rev. Lett. 83(4), 670(1999)
https://doi.org/10.1103/PhysRevLett.83.670
3 P. A. R.Ade, et al. [Planck Collaboration], Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594, A13(2016)
https://doi.org/10.1051/0004-6361/201525830
4 S.Weinberg, The cosmological constant problem, Rev. Mod. Phys. 61(1), 1 (1989)
https://doi.org/10.1103/RevModPhys.61.1
5 E.Witten, Quantum gravity in de Sitter space, arXiv: hep-th/0106109
6 R. R.Caldwell, A phantom menace? Cosmological consequences of a dark energy component with supernegative equation of state, Phys. Lett. B545(1–2), 23(2002)
https://doi.org/10.1016/S0370-2693(02)02589-3
7 Y.Fujii, Origin of the gravitational constant and particle masses in a scale-invariant scalar-tensor theory, Phys. Rev. D26(10), 2580(1982)
https://doi.org/10.1103/PhysRevD.26.2580
8 L. H.Ford, Cosmological-constant damping by unstable scalar fields, Phys. Rev. D35(8), 2339(1987)
https://doi.org/10.1103/PhysRevD.35.2339
9 C.Wetterich, Cosmology and the fate of dilatation symmetry, Nucl. Phys. B302(4), 668(1988)
https://doi.org/10.1016/0550-3213(88)90193-9
10 B.RatraandP. J. E.Peebles, Cosmological consequences of a rolling homogeneous scalar field, Phys. Rev. D37(12), 3406(1988)
https://doi.org/10.1103/PhysRevD.37.3406
11 S. M.Carroll, Quintessence and the rest of the world: Suppressing long-range interactions, Phys. Rev. Lett.81(15), 3067(1998)
https://doi.org/10.1103/PhysRevLett.81.3067
12 A.Hebeckerand C.Wetterich, Quintessential adjustment of the cosmological constant, Phys. Rev. Lett.86(16), 3339(2000)
13 A.Hebeckerand C.Wetterich, Natural quintessence? Phys. Lett. B497(3–4), 281(2001)
14 R. R.Caldwell, M.Kamionkovski, and N. N.Weinberg, Phantom energy and cosmic doomsday, Phys. Rev. Lett.91, 071301(2003)
https://doi.org/10.1103/PhysRevLett.91.071301
15 P.WangandX.Meng, Can vacuum decay in our universe? Class. Quantum Gravity22(2), 283(2005)
https://doi.org/10.1088/0264-9381/22/2/003
16 X.Meng, J.Ren, and M.Hu, Friedmann cosmology with a generalized equation of state and bulk viscosity, Commum. Theor. Phys.47(2), 379(2007)
https://doi.org/10.1088/0253-6102/47/2/036
17 J.RenandX.Meng, Modified equation of state, scalar field and bulk viscosity in Friedmann universe, Phys. Lett. B636(1), 5 (2006)
https://doi.org/10.1016/j.physletb.2006.03.029
18 J.Renand X.Meng, Cosmological model with viscosity media (dark fluid) described by an effective equation of state, Phys. Lett. B633(1), 1 (2006)
https://doi.org/10.1016/j.physletb.2005.11.055
19 M.Huand X.Meng, Bulk viscous cosmology: Statefinder and entropy, Phys. Lett. B635(4), 186(2006)
https://doi.org/10.1016/j.physletb.2006.02.059
20 X. H.Mengand X.Dou, Friedmann cosmology with bulk viscosity: A concrete model for dark energy, Commum. Theor. Phys.52(2), 377(2009)
https://doi.org/10.1088/0253-6102/52/2/36
21 X.Douand X.Meng, Bulk viscous cosmology: Unified dark matter, Adv. Astron.1155, 829340(2011)
https://doi.org/10.1155/2011/829340
22 A.Kamenshchik, U.Moschella, and V.Pasquier, An alternative to quintessence, Phys. Lett. B511(2–4), 265(2001)
https://doi.org/10.1016/S0370-2693(01)00571-8
23 S.Capozziello, Curvature quintessence, Int. J. Mod. Phys. D11(04), 483(2002)
https://doi.org/10.1142/S0218271802002025
24 S.Capozziello, V. F.Cardone, S.Carloni, and A.Troisi, Curvature quintessence matched with observational data, Int. J. Mod. Phys. D12(10), 1969(2003)
https://doi.org/10.1142/S0218271803004407
25 S. M.Carroll, V.Duvvuri, M.Trodden, and M. S.Turner, Is cosmic speed-up due to new gravitational physics? Phys. Rev. D70(4), 043528(2004)
https://doi.org/10.1103/PhysRevD.70.043528
26 S.Nojiriand S. D.Odintsov, Modified gravity with negative and positive powers of the curvature: Unification of the inflation and of the cosmic acceleration, Phys. Rev. D68(12), 123512(2003)
https://doi.org/10.1103/PhysRevD.68.123512
27 S.Nojiriand S. D.Odintsov, Unified cosmic history in modified gravity: From F(R) theory to Lorentz noninvariant models, Phys. Rep.505(2–4), 59(2011)
https://doi.org/10.1016/j.physrep.2011.04.001
28 S.Nojiri, S. D.Odintsov, and D.Sáez-Gómez, Cosmological reconstruction of realistic modified F(R) gravities, Phys. Lett. B681, 74(2009)
https://doi.org/10.1016/j.physletb.2009.09.045
29 J. P.Uzan, Cosmological scaling solutions of nonminimally coupled scalar fields, Phys. Rev. D59(12), 123510(1999)
https://doi.org/10.1103/PhysRevD.59.123510
30 T.Chiba, Quintessence, the gravitational constant, and gravity, Phys. Rev. D60(8), 083508(1999)
https://doi.org/10.1103/PhysRevD.60.083508
31 V.Sahniand A. A.Starobinsky, Reconstructing dark energy, Int. J. Mod. Phys. D15(12), 2105(2006)
https://doi.org/10.1142/S0218271806009704
32 P.Ruiz-Lapuente, Dark energy, gravitation and supernovae, Class. Quantum Gravity24(11), R91(2007)
https://doi.org/10.1088/0264-9381/24/11/R01
33 L.Randalland R.Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett.83(17), 3370(1999)
https://doi.org/10.1103/PhysRevLett.83.3370
34 L.Randalland R.Sundrum, An alternative to compactification, Phys. Rev. Lett.83(23), 4690(1999)
https://doi.org/10.1103/PhysRevLett.83.4690
35 G.Dvali, G.Gabadadze, and M.Porrati, 4-D gravity on a brane in 5-D Minkowski space, Phys. Lett. B485(1–3), 208(2000)
https://doi.org/10.1016/S0370-2693(00)00669-9
36 T.Jacobson, Einstein–Aether gravity: A status report, PoS QG-PH: 020(2007)
37 T.Jacobson, Extended Horava gravity and Einstein- Aether theory, Phys. Rev. D81(10), 101502(2010)
https://doi.org/10.1103/PhysRevD.81.101502
38 F.Izaurieta, P.Minning, A.Perez, E.Rodriguez, and P.Salgado, Standard general relativity from Chern-Simons gravity, Phys. Lett. B678(2), 213(2009)
https://doi.org/10.1016/j.physletb.2009.06.017
39 G.Dvaliand G.Gabadadze, Gravity on a brane in infinite volume extra space, Phys. Rev. D63(6), 065007(2001)
https://doi.org/10.1103/PhysRevD.63.065007
40 C.Deffayet, Cosmology on a brane in Minkowski bulk, Phys. Lett. B502(1–4), 199(2001)
41 D.Wangand X.Meng, Wormholes supported by phantom energy from Shan–Chen cosmological fluids, Eur. Phys. J. C76(3), 171(2016)
https://doi.org/10.1140/epjc/s10052-016-4024-x
42 D.Wangand X.Meng, Modeling phantom energy wormholes from Shan–Chen fluids, arXiv: 1512.03097
43 D.Wangand X.Meng, Traversable geometric dark energy wormholes constrained by astrophysical observations, Eur. Phys. J. C76(9), 484(2016)
https://doi.org/10.1140/epjc/s10052-016-4321-4
44 D.Wangand X.Meng, Traversable holographic dark energy wormholes constrained by astronomical observations, arXiv: 1602.04699
45 L.Flamm, Beitrge zur Einsteinschen Gravitations theorie, Phys. Z.17, 448(1916)
46 A.Einsteinand N.Rosen, The particle problem in the general theory of relativity, Phys. Rev.48(1), 73(1935)
https://doi.org/10.1103/PhysRev.48.73
47 J. A.Wheeler, Geons, Phys. Rev.97(2), 511(1955)
https://doi.org/10.1103/PhysRev.97.511
48 C. W.Misnerand J. A.Wheeler, Classical physics as geometry: Gravitation, electromagnetism, unquantized charge, and mass as properties of curved empty space, Ann. Phys.2(6), 525(1957)
https://doi.org/10.1016/0003-4916(57)90049-0
49 K. A.Bronnikov, Scalar-tensor theory and scalar charge, Acta Phys. Pol. B4, 251(1973)
50 H. G.Ellis, Ether ow through a drainhole – a particle model in general relativity, J. Math. Phys.14(1), 104(1973)
https://doi.org/10.1063/1.1666161
51 H. G.Ellis, The evolving, flowless drain hole: A nongravitating particle model in general relativity theory, Gen. Relativ. Gravit.10(2), 105(1979)
https://doi.org/10.1007/BF00756794
52 M. S.Morrisand K. S.Thorne, Wormholes in spacetime and their use for interstellar travel: A tool for teaching general relativity, Am. J. Phys.56(5), 395(1988)
https://doi.org/10.1119/1.15620
53 M.Visser, Traversable wormholes: Some simple examples, Phys. Rev. D39(10), 3182(1989)
https://doi.org/10.1103/PhysRevD.39.3182
54 M.Visser, Traversable wormholes from surgically modified Schwarzschild space–times, Nucl. Phys. B328(1), 203(1989)
https://doi.org/10.1016/0550-3213(89)90100-4
55 M.Visser, Quantum mechanical stabilization of Minkowski signature wormholes, Phys. Lett. B242(1), 24(1990)
https://doi.org/10.1016/0370-2693(90)91588-3
56 E.Poissonand M.Visser, Thin shell wormholes: Linearization stability, Phys. Rev. D52(12), 7318(1995)
https://doi.org/10.1103/PhysRevD.52.7318
57 S. V.Sushkov, Wormholes supported by a phantom energy, Phys. Rev. D71(4), 043520(2005)
https://doi.org/10.1103/PhysRevD.71.043520
58 F. S. N.Lobo, Phantom energy traversable wormholes, Phys. Rev. D71(8), 084011(2005)
https://doi.org/10.1103/PhysRevD.71.084011
59 D.WangandX.Meng, Observational constraints and diagnostics for time-dependent dark energy models, arXiv: 1603.00699
60 D.Wangand X.Meng, Observational constraints and differential diagnosis for cosmic evolutionary models,arXiv: 1603.08112
61 D.Wangand X.Meng, Reconstructing f(R) gravity from viscous cosmology constrained by observations, arXiv: 1604.02951
62 C.Deffayet, G.Dvali, and G.Gabadadze, Accelerated universe from gravity leaking to extra dimensions, Phys. Rev. D65(4), 044023(2002)
https://doi.org/10.1103/PhysRevD.65.044023
63 B. P.Abbott, et al. [LIGO Scientific Collaboration and Virgo Collaboration], Observation of gravitational waves from a binary black hole merger, Phys. Rev. Lett.116(6), 061102(2016)
https://doi.org/10.1103/PhysRevLett.116.061102
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed