The elastic, dynamical, and electronic properties of cubic LiHg and Li3Hg were investigated based on first-principles methods. The elastic constants and phonon spectral calculations confirmed the mechanical and dynamical stability of the materials at ambient conditions. The obtained elastic moduli of LiHg are slightly larger than those of Li3Hg. Both LiHg and Li3Hg are ductile materials with strong shear anisotropy as metals with mixed ionic, covalent, and metallic interactions. The calculated Debye temperatures are 223.5 K and 230.6 K for LiHg and Li3Hg, respectively. The calculated phonon frequency of the T2g mode in Li3Hg is 326.8 cm−1. The p states from the Hg and Li atoms dominate the electronic structure near the Fermi level. These findings may inspire further experimental and theoretical study on the potential technical and engineering applications of similar alkali metal-based intermetallic compounds.
F.Wangand G. J.Miller,Revisiting the Zintl–Klemm concept: Alkali metal trielides, Inorg. Chem. 50(16), 7625(2011) https://doi.org/10.1021/ic200643f
5
R. E.Olson, Determination of the Li–Hg intermolecular potential from molecular-beam scattering measurements, J. Chem. Phys. 49(10), 4499(1968) https://doi.org/10.1063/1.1669902
6
U.Buck, H. O.Hoppe, F.Huisken, and H.Pauly, Intermolecular potentials by the inversion of molecular beam scattering data (IV): Differential cross sections and potential for LiHg, J. Chem. Phys. 60(12), 4925(1974) https://doi.org/10.1063/1.1681004
7
M. M.Gleichmannand B. A.Hess, Relativistic all‐electron ab initiocalculations of ground and excited states of LiHg including spin–orbit effects, J. Chem. Phys. 101(11), 9691(1994) https://doi.org/10.1063/1.467934
8
D.Gruberand X.Li, Vibrational constants and longrange potentials of the LiHg (X12) ground state, Chem. Phys. Lett. 240(1–3), 42(1995) https://doi.org/10.1016/0009-2614(95)00513-4
9
D.Gruber, L.Windholz, X.Li, M.Gleichmann, and B.He, Theoretical and experimental studies of th LiHgblue green bands, AIP Conf. Proc. 328, 406(1995) https://doi.org/10.1063/1.47488
10
D.Gruber, X.Li, L.Windholz, M.Gleichmann, B. A.Hess, I.Vezmar, and G.Pichler, The LiHg(22∏3/2−X2Σ1/2+) system, J. Phys. Chem. 100(24), 10062(1996) https://doi.org/10.1021/jp9602078
11
D.Gruber, M.Musso, L.Windholz, M.Gleichmann, B. A.Hess, F.Fuso, and M.Allegrini, Study of the LiHg excimer: Blue–green bands, J. Chem. Phys. 101(2), 929(1994) https://doi.org/10.1063/1.467747
12
L. F.Kozinand S. C.Hansen, Mercury Handbook: Chemistry, Applications and Environmental Impact, United Kingdom: Royal Society of Chemistry publishing, 2013
13
F.Tamborninoand C.Hoch, Bad metal behaviour in the new Hg-rich amalgam KHg6 with polar metallic bonding, J. Alloys Compd. 618, 299(2015) https://doi.org/10.1016/j.jallcom.2014.08.173
G.Kresseand J.Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6(1), 15(1996) https://doi.org/10.1016/0927-0256(96)00008-0
G.Kresseand D.Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B59(3), 1758(1999) https://doi.org/10.1103/PhysRevB.59.1758
18
P.Giannozzi, et al., QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials, J. Phys.: Condens. Matter21, 395502(2009) https://doi.org/10.1088/0953-8984/21/39/395502
19
M.Bornand K.Huang, Dynamical Theory of Crystal Lattices, Oxford: Clarendon Press, 1956
20
Y. L.Liand Z.Zeng, Potential ultra-incompressible material ReN: First-principles prediction, Solid State Commun. 149(39–40), 1591(2009) https://doi.org/10.1016/j.ssc.2009.06.040
21
Y.Li, Z.Zeng, and H.Lin, Structural, elastic, electronic and dynamical properties of OsB and ReB: Density functional calculations, Chem. Phys. Lett. 492(4–6), 246(2010) https://doi.org/10.1016/j.cplett.2010.04.074
22
Y. L.Li, W.Luo, X. J.Chen, Z.Zeng, H. Q.Lin, and R.Ahuja, Formation of Nanofoam carbon and reemergence of Superconductivity in compressed CaC6, Sci. Rep. 3(1), 3331(2013) https://doi.org/10.1038/srep03331
23
Y. L.Li, W.Luo, Z.Zeng, H. Q.Lin, H. K.Mao, and R.Ahuja, Pressure-induced superconductivity in CaC2, Proc. Natl. Acad. Sci. USA110(23), 9289(2013) https://doi.org/10.1073/pnas.1307384110
S. F.Pugh, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, Philos. Mag. 45(367), 823(1954) https://doi.org/10.1080/14786440808520496
26
P.Ravindran, L.Fast, P. A.Korzhavyi, B.Johansson, J.Wills, and O.Eriksson, Density functional theory for calculation of elastic properties of orthorhombic crystals: Application to TiSi2, J. Appl. Phys. 84(9), 4891(1998) https://doi.org/10.1063/1.368733
C.Zener, Elasticity and Anelasticity of Metals, Chicago: Chicago University Press, 1948
29
Y. L.Li, S. N.Wang, A. R.Oganov, H.Gou, J. S.Simth, and T. A.Strobel, Investigation of exotic stable calcium carbides using theory and experiment, Nat. Commun. 6, 6974(2015) https://doi.org/10.1038/ncomms7974
30
S. J.Clark, M. D.Segall, C. J.Pickard, P. J.Hasnip, M. J.Probert, K.Refson, and M. C.Payne, First principles methods using CASTEP, Z. Kristallogr. 220(5–6), 567(2005) https://doi.org/10.1524/zkri.220.5.567.65075