Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2018, Vol. 13 Issue (5): 137804   https://doi.org/10.1007/s11467-018-0772-4
  本期目录
Molecular dynamics study of nanodroplet diffusion on smooth solid surfaces
Zhao-Xia Niu1,2, Tao Huang1,3, Yong Chen1,2()
1. Center of Soft Matter Physics and its Applications, Beihang University, Beijing 100191, China
2. School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191, China
3. Institute of Theoretical Physics, Lanzhou University, Lanzhou 730000, China
 全文: PDF(4359 KB)  
Abstract

We perform molecular dynamics simulations of Lennard–Jones particles in a canonical ensemble to study the diffusion of nanodroplets on smooth solid surfaces. Using the droplet-surface interaction to realize a hydrophilic or hydrophobic surface and calculating the mean square displacement of the center-of-mass of the nanodroplets, the random motion of nanodroplets could be characterized by shorttime subdiffusion, intermediate-time superdiffusion, and long-time normal diffusion. The short-time subdiffusive exponent increases and almost reaches unity (normal diffusion) with decreasing droplet size or enhancing hydrophobicity. The diffusion coefficient of the droplet on hydrophobic surfaces is larger than that on hydrophilic surfaces.

Key wordsnanodroplet    Brownian motion    surface diffusion
收稿日期: 2017-09-13      出版日期: 2018-04-24
Corresponding Author(s): Yong Chen   
 引用本文:   
. [J]. Frontiers of Physics, 2018, 13(5): 137804.
Zhao-Xia Niu, Tao Huang, Yong Chen. Molecular dynamics study of nanodroplet diffusion on smooth solid surfaces. Front. Phys. , 2018, 13(5): 137804.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-018-0772-4
https://academic.hep.com.cn/fop/CN/Y2018/V13/I5/137804
1 H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, and E. P. Woo, High-resolution inkjet printing of all-polymer transistor circuits, Science 290(5499), 2123 (2000)
https://doi.org/10.1126/science.290.5499.2123
2 J. A. Lim, W. H. Lee, H. S. Lee, J. H. Lee, Y. D. Park, and K. Cho, Self-organization of ink-jet-printed triisopropylsilylethynyl pentacene via evaporation-induced flows in a drying droplet, Adv. Funct. Mater. 18(2), 229 (2008)
https://doi.org/10.1002/adfm.200700859
3 J. B. Boreyko and C. H. Chen, Self-propelled dropwise condensate on superhydrophobic surfaces, Phys. Rev. Lett. 103(18), 184501 (2009)
https://doi.org/10.1103/PhysRevLett.103.184501
4 R. N. Leach, F. Stevens, S. C. Langford, and J. T. Dickinson, Dropwise condensation: Experiments and simulations of nucleation and growth of water drops in a cooling system, Langmuir 22(21), 8864 (2006)
https://doi.org/10.1021/la061901+
5 R. Blossey, Self-cleaning surfaces — Virtual realities, Nat. Mater. 2(5), 301 (2003)
https://doi.org/10.1038/nmat856
6 X. Deng, L. Mammen, H. J. Butt, and D. Vollmer, Candle soot as a template for a transparent robust superamphiphobic coating, Science 335(6064), 67 (2012)
https://doi.org/10.1126/science.1207115
7 X. Yao, H. Bai, J. Ju, D. Zhou, J. Li, H. Zhang, B. Yang, and L. Jiang, Running droplet of interfacial chemical reaction flow, Soft Matter 8(22), 5988 (2012)
https://doi.org/10.1039/c2sm25153a
8 A. Fallah-Araghi, K. Meguellati, J. C. Baret, A. E. Harrak, T. Mangeat, M. Karplus, S. Ladame, C. M. Marques, and A. D. Griffiths, Enhanced chemical synthesis at soft interfaces: A universal reaction-adsorption mechanism in microcompartments, Phys. Rev. Lett. 112(2), 028301 (2014)
https://doi.org/10.1103/PhysRevLett.112.028301
9 Y. J. Sun, T. Huang, J. F. Zhao, and Y. Chen, Evaporation of a nanodroplet on a rough substrate, Front. Phys. 12(5), 126401 (2017)
https://doi.org/10.1007/s11467-016-0631-0
10 J. Zhang, F. Leroy, and F. Müller-Plathe, Evaporation of nanodroplets on heated substrates: A molecular dynamics simulation study, Langmuir 29(31), 9770 (2013)
https://doi.org/10.1021/la401655h
11 C. Andrieu, D. A. Beysens, V. S. Nikolayev, and Y. Pomeau, Coalescence of sessile drops, J. Fluid Mech. 453, 427 (2002)
https://doi.org/10.1017/S0022112001007121
12 N. Savva, S. Kalliadasis, and G. A. Pavliotis, Twodimensional droplet spreading over random topographical substrates, Phys. Rev. Lett. 104(8), 084501 (2010)
https://doi.org/10.1103/PhysRevLett.104.084501
13 N. Patra, B. Wang, and P. Král, Nanodroplet activated and guided folding of graphene nanostructures, Nano Lett. 9(11), 3766 (2009)
https://doi.org/10.1021/nl9019616
14 J. M. Sancho, A. M. Lacasta, K. Lindenberg, I. M. Sokolov, and A. H. Romero, Diffusion on a solid surface: Anomalous is normal, Phys. Rev. Lett. 92(25), 250601 (2004)
https://doi.org/10.1103/PhysRevLett.92.250601
15 L. Zhu, C. W. Brian, S. F. Swallen, P. T. Straus, M. D. Ediger, and L. Yu, Surface self-diffusion of an organic glass, Phys. Rev. Lett. 106(25), 256103 (2011)
https://doi.org/10.1103/PhysRevLett.106.256103
16 J. H. Jeon, V. Tejedor, S. Burov, E. Barkai, C. Selhuber-Unkel, K. Berg-Sørensen, L. Oddershede, and R. Metzler, In Vivoanomalous diffusion and weak ergodicity breaking of lipid granules, Phys. Rev. Lett. 106(4), 048103 (2011)
https://doi.org/10.1103/PhysRevLett.106.048103
17 C. M. Dobson, Protein folding and misfolding, Nature 426(6968), 884 (2003)
https://doi.org/10.1038/nature02261
18 G. M. Whitesides, J. P. Mathias, and C. T. Seto, Molecular self-assembly and nanochemistry: A chemical strategy for the synthesis of nanostructures, Science 254(5036), 1312 (1991)
https://doi.org/10.1126/science.1962191
19 S. Wang and Y. Zhu, Molecular diffusion on surface tethered polymer layers: Coupling of molecular thermal fluctuation and polymer chain dynamics, Soft Matter 6(19), 4661 (2010)
https://doi.org/10.1039/c0sm00532k
20 F. Klappenberger, Echoes from diffusion, Nat. Mater. 15(4), 374 (2016)
https://doi.org/10.1038/nmat4602
21 F. Celestini, Diffusion of a liquid nanoparticle on a disordered substrate, Phys. Rev. B 70(11), 115402 (2004)
https://doi.org/10.1103/PhysRevB.70.115402
22 G. D. Förster, F. Rabilloud, and F. Calvo, Adsorption of metal nanoparticles on carbon substrates and epitaxial graphene: Assessing models for dispersion forces, Phys. Rev. B 91, 245433 (2015)
https://doi.org/10.1103/PhysRevB.91.245433
23 T. A. Ho, D. V. Papavassiliou, L. L. Lee, and A. Striolo, Liquid water can slip on a hydrophilic surface, Proc. Natl. Acad. Sci. USA 108(39), 16170 (2011)
https://doi.org/10.1073/pnas.1105189108
24 S. Daniel, M. K. Chaudhury, and J. C. Chen, Fast drop movements resulting from the phase change on a gradient surface, Science 291(5504), 633 (2001)
https://doi.org/10.1126/science.291.5504.633
25 Z. Li and H. Wang, Drag force, diffusion coefficient, and electric mobility of small particles (I): Theory applicable to the free-molecule regime, Phys. Rev. E 68(6), 061206 (2003)
https://doi.org/10.1103/PhysRevE.68.061206
26 C. Li, J. Huang, and Z. Li, A relation for nanodroplet diffusion on smooth surfaces, Sci. Rep. 6, 26488 (2016)
https://doi.org/10.1038/srep26488
27 S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys. 117(1), 1 (1995)
https://doi.org/10.1006/jcph.1995.1039
28 J. Davoodi, M. Safaralizade, and M. Yarifard, Molecular dynamics simulation of a gold nanodroplet in contact with graphene, Mater. Lett. 178, 205 (2016)
https://doi.org/10.1016/j.matlet.2016.05.013
29 D. J. Evans and B. L. Holian, The Nose–Hoover thermostat, J. Chem. Phys. 83(8), 4069 (1985)
https://doi.org/10.1063/1.449071
30 K. Yasuoka, M. Matsumoto, and Y. Kataoka, Evaporation and condensation at a liquid surface (I): Argon, J. Chem. Phys. 101(9), 7904 (1994)
https://doi.org/10.1063/1.468216
31 K. Yasuoka and M. Matsumoto, Molecular dynamics of homogeneous nucleation in the vapor phase (I): Lennard-Jones fluid, J. Chem. Phys. 109(19), 8451 (1998)
https://doi.org/10.1063/1.477509
32 N. Kumar, U. Harbola, and K. Lindenberg, Memoryinduced anomalous dynamics: Emergence of diffusion, subdiffusion, and superdiffusion from a single random walk model, Phys. Rev. E 82(2), 021101 (2010)
https://doi.org/10.1103/PhysRevE.82.021101
33 W. Paul, Anomalous diffusion in polymer melts, Chem. Phys. 284(1–2), 59 (2002)
https://doi.org/10.1016/S0301-0104(02)00536-0
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed