Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2018, Vol. 13 Issue (5): 130401   https://doi.org/10.1007/s11467-018-0789-8
  本期目录
Black ring entropy from the Weyl tensor
Ze-Wei Zhao1, Chun-Kai Yu1,2, Nan Li1()
1. Department of Physics, College of Sciences, Northeastern University, Shenyang 110819, China
2. Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
 全文: PDF(178 KB)  
Abstract

A black ring is an asymptotically flat vacuum solution of the n-dimensional Einstein equations with an event horizon of topology S1×Sn−3. In this study, a connection between the black ring entropy and the Weyl tensor Cμνλρ is explored by interpreting the Weyl scalar invariant CμνλρCμνλρ as the entropy density in five-dimensional space-time. It is shown that the proper volume integral of CμνλρCμνλρ for a neutral black ring is proportional to the black ring entropy in the thin-ring limit. Similar calculations are extended to more general cases: a black string, a black ring with two angular momenta, and a black ring with a cosmological constant. The proportionality is also found to be valid for these complex black objects at the leading order.

Key wordsblack ring    Weyl tensor    entropy    Penrose conjecture
收稿日期: 2018-02-02      出版日期: 2018-05-25
Corresponding Author(s): Nan Li   
 引用本文:   
. [J]. Frontiers of Physics, 2018, 13(5): 130401.
Ze-Wei Zhao, Chun-Kai Yu, Nan Li. Black ring entropy from the Weyl tensor. Front. Phys. , 2018, 13(5): 130401.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-018-0789-8
https://academic.hep.com.cn/fop/CN/Y2018/V13/I5/130401
1 R. Penrose, General Relativity, an Einstein Centenary Survey, Cambridge: Cambridge University Press, 1979
2 J. Wainwright, Power law singularities in orthogonal spatially homogeneous cosmologies, Gen. Relativ. Gravit. 16(7), 657 (1984)
https://doi.org/10.1007/BF00767859
3 S. W. Goode and J. Wainwright, Isotropic singularities in cosmological models, Class. Quantum Gravity 2(1), 99 (1985)
https://doi.org/10.1088/0264-9381/2/1/010
4 W. B. Bonnor, The gravitational arrow of time and the Szekeres cosmological models, Class. Quantum Gravity 3(4), 495 (1986)
https://doi.org/10.1088/0264-9381/3/4/005
5 W. B. Bonnor, Arrow of time for a collapsing, radiating sphere, Phys. Lett. A 122(6–7), 305 (1987)
https://doi.org/10.1016/0375-9601(87)90830-9
6 V. Husain, Weyl tensor and gravitational entropy, Phys. Rev. D 38(10), 3314 (1988)
https://doi.org/10.1103/PhysRevD.38.3314
7 S. W. Goode, Isotropic singularities and the Penrose-Weyl tensor hypothesis, Class. Quantum Gravity 8(1), L1 (1991)
https://doi.org/10.1088/0264-9381/8/1/001
8 S. W. Goode, A. A. Coley, and J. Wainwright, The isotropic singularity in cosmology, Class. Quantum Gravity 9(2), 445 (1992)
https://doi.org/10.1088/0264-9381/9/2/010
9 R. P. A. C. Newman, On the structure of conformal singularities in classical general relativity, Proc. R. Soc. A 443(1919), 473 (1993)
10 S. A. Hayward, On cosmological isotropy, quantum cosmology and the Weyl curvature hypothesis, Class. Quantum Gravity 10(1), L7 (1993)
https://doi.org/10.1088/0264-9381/10/1/002
11 A. V. Nesteruk, The Weyl curvature hypothesis and a choice of the initial vacuum for quantum fields at the cosmological singularity,Class. Quantum Gravity 11(1), L15 (1994)
https://doi.org/10.1088/0264-9381/11/1/004
12 T. Rothman and P. Anninos, Phase space approach to the gravitational arrow of time, Phys. Rev. D 55(4), 1948 (1997)
https://doi.org/10.1103/PhysRevD.55.1948
13 S. Barve and T. P. Singh, Naked singularities and the Weyl curvature hypothesis, arXiv: gr-qc/9705060 (1997)
14 N. Pelavas and K. Lake, Measures of gravitational entropy: Self-similar spacetimes, Phys. Rev. D 62(4), 044009 (2000)
https://doi.org/10.1103/PhysRevD.62.044009
15 Ø. Grøn and S. Hervik, The Weyl curvature conjecture, arXiv: gr-qc/0205026 (2002)
16 J. D. Barrow and S. Hervik, The Weyl tensor in spatially homogeneous cosmological models, Class. Quantum Gravity 19(20), 5173 (2002)
https://doi.org/10.1088/0264-9381/19/20/311
17 W. C. Lim, H. van Elst, C. Uggla, and J. Wainwright, Asymptotic isotropization in inhomogeneous cosmology, Phys. Rev. D 69(10), 103507 (2004)
https://doi.org/10.1103/PhysRevD.69.103507
18 Ø. Rudjord, Ø. Grøn, and S. Hervik, The Weyl curvature conjecture and black hole entropy, Phys. Scr. 77(5), 055901 (2008)
https://doi.org/10.1088/0031-8949/77/05/055901
19 N. Li, T. Buchert, A. Hosoya, M. Morita, and D. J. Schwarz, Relative information entropy and Weyl curvature of the inhomogeneous universe, Phys. Rev. D 86(8), 083539 (2012)
https://doi.org/10.1103/PhysRevD.86.083539
20 O. C. Stoica, On the Weyl curvature hypothesis, Ann. Phys. 338, 186 (2013)
https://doi.org/10.1016/j.aop.2013.08.002
21 T. Maki and M. Morita, Weyl curvature hypothesis in terms of spacetime thermodynamics, in: Progress in Mathematical Relativity, Gravitation and Cosmology, Vol. 60 of Springer Proc. Math. Stat., 2014, p 311
https://doi.org/10.1007/978-3-642-40157-2_44
22 N. Li, X. L. Li, and S. P. Song, Kullback-Leibler entropy and Penrose conjecture in the Lemaître–Tolman–Bondi model, Eur. Phys. J. C 75(3), 114 (2015)
https://doi.org/10.1140/epjc/s10052-015-3334-8
23 G. Marozzi, J. P. Uzan, O. Umeh, and C. Clarkson, Cosmological evolution of the gravitational entropy of the large-scale structure, Gen. Relativ. Gravit. 47(10), 114 (2015)
https://doi.org/10.1007/s10714-015-1955-8
24 E. Okon and D. Sudarsky, A (not so?) novel explanation for the very special initial state of the universe, Class. Quantum Gravity 33(22), 225015 (2016)
https://doi.org/10.1088/0264-9381/33/22/225015
25 T. Clifton, G. F. R. Ellis, and R. Tavakol, A gravitational entropy proposal, Class. Quantum Gravity 30(12), 125009 (2013)
https://doi.org/10.1088/0264-9381/30/12/125009
26 S. Barve and T. P. Singh, Are naked singularities forbidden by the second law of thermodynamics? Mod. Phys. Lett. A 12(32), 2415 (1997)
https://doi.org/10.1142/S021773239700251X
27 J. D. Bekenstein, Black holes and entropy, Phys. Rev. D 7(8), 2333 (1973)
https://doi.org/10.1103/PhysRevD.7.2333
28 J. M. Bardeen, B. Carter, and S. W. Hawking, The four laws of black hole mechanics, Commun. Math. Phys. 31(2), 161 (1973)
https://doi.org/10.1007/BF01645742
29 N. Li, X. L. Li, and S. P. Song, An exploration of the black hole entropy via the Weyl tensor, Eur. Phys. J. C 76(3), 111 (2016)
https://doi.org/10.1140/epjc/s10052-016-3960-9
30 R. Emparan and H. S. Reall, A rotating black ring solution in five dimensions, Phys. Rev. Lett. 88(10), 101101 (2002)
https://doi.org/10.1103/PhysRevLett.88.101101
31 H. Elvang and R. Emparan, Black rings, supertubes, and a stringy resolution of black hole non-uniqueness, J. High Energy Phys. 2003(11), 035 (2003)
32 R. Emparan, Rotating circular strings, and in finite non-uniqueness of black rings, J. High Energy Phys. 2004(03), 064 (2004)
33 R. Emparan and H. S. Reall, Black rings, Class. Quantum Gravity 23(20), R169 (2006)
https://doi.org/10.1088/0264-9381/23/20/R01
34 H. Elvang, R. Emparan, and A. Virmani, Dynamics and stability of black rings, J. High Energy Phys. 2006(12), 074 (2006)
35 H. Elvang, R. Emparan, and P. Figueras, Phases of fivedimensional black holes, J. High Energy Phys. 2007(05), 056 (2007)
36 R. Emparan, T. Harmark, V. Niarchos, N. A. Obers, and M. J. Rodriguez, The phase structure of higherdimensional black rings and black holes, J. High Energy Phys. 2007(10), 110 (2007)
https://doi.org/10.1088/1126-6708/2007/10/110
37 R. Emparan and H. S. Reall, Black holes in higher dimensions, Living Rev. Relativ. 11(1), 6 (2008)
https://doi.org/10.12942/lrr-2008-6
38 R. Emparan and H. S. Reall, Black Holes in Higher Dimensions, Cambridge: Cambridge University Press, 2012
39 R. C. Myers and M. J. Perry, Black holes in higher dimensional space-times, Ann. Phys. 172(2), 304 (1986)
https://doi.org/10.1016/0003-4916(86)90186-7
40 R. Gregory and R. Laflamme, Black strings and pbranes are unstable, Phys. Rev. Lett. 70(19), 2837 (1993)
https://doi.org/10.1103/PhysRevLett.70.2837
41 R. Gregory and R. Laflamme, The instability of charged black strings and p-branes, Nucl. Phys. B 428(1–2), 399 (1994)
https://doi.org/10.1016/0550-3213(94)90206-2
42 A. A. Pomeransky and R. A. Sen’kov, Black ring with two angular momenta, arXiv: hep-th/0612005 (2006)
43 P. Figueras and S. Tunyasuvunakool, Black rings in global anti-de Sitter space, J. High Energy Phys. 2015(03), 149 (2015)
https://doi.org/10.1007/JHEP03(2015)149
44 M. M. Caldarelli, R. Emparan, and M. J. Rodríguez, Black rings in (anti)-de Sitter space, J. High Energy Phys. 2008(11), 011 (2008)
45 R. Bousso and S. W. Hawking, (Anti-)evaporation of Schwarzschild–de Sitter black holes, Phys. Rev. D 57(4), 2436 (1998)
https://doi.org/10.1103/PhysRevD.57.2436
46 F. L. Lin and Y. S. Wu, Near-horizon virasoro symmetry and the entropy of de Sitter space in any dimension, Phys. Lett. B 453(3–4), 222 (1999)
https://doi.org/10.1016/S0370-2693(99)00340-8
47 Z. Stuchlík and S. Hledík, Some properties of the Schwarzschild–de Sitter and Schwarzschild–anti-de Sitter spacetimes, Phys. Rev. D 60(4), 044006 (1999)
https://doi.org/10.1103/PhysRevD.60.044006
48 Y. S. Myung, Entropy of the three-dimensional Schwarzschild–de Sitter black hole, Mod. Phys. Lett. A 16(36), 2353 (2001)
https://doi.org/10.1142/S0217732301005795
49 V. Balasubramanian, J. de Boer, and D. Minic, Mass, entropy, and holography in asymptotically de Sitter spaces, Phys. Rev. D 65(12), 123508 (2002)
https://doi.org/10.1103/PhysRevD.65.123508
50 A. M. Ghezelbash and R. B. Mann, Action, mass and entropy of Schwarzschild–de Sitter black holes and the de Sitter/CFT correspondence, J. High Energy Phys. 2002(01), 005 (2002)
51 M. R. Setare, The Cardy–Verlinde formula and entropy of topological Reissner–Nordstrom black holes in de Sitter spaces, Mod. Phys. Lett. A 17(32), 2089 (2002)
https://doi.org/10.1142/S0217732302008733
52 V. Cardoso and J. P. S. Lemos, Quasinormal modes of the near extremal Schwarzschild–de Sitter black hole, Phys. Rev. D 67(8), 084020 (2003)
https://doi.org/10.1103/PhysRevD.67.084020
53 S. Shankaranarayanan, Temperature and entropy of Schwarzschild–de Sitter space-time, Phys. Rev. D 67(8), 084026 (2003)
https://doi.org/10.1103/PhysRevD.67.084026
54 Y. S. Myung, Relationship between five-dimensional black holes and de Sitter spaces, Class. Quantum Gravity 21(4), 1279 (2004)
https://doi.org/10.1088/0264-9381/21/4/035
55 Y. S. Myung, Thermodynamics of the Schwarzschild–de Sitter black hole: Thermal stability of the Nariai black hole, Phys. Rev. D 77(10), 104007 (2008)
https://doi.org/10.1103/PhysRevD.77.104007
56 A. Araujo and J. G. Pereira, Entropy in locally-de Sitter spacetimes, Int. J. Mod. Phys. D 24(14), 1550099 (2015)
https://doi.org/10.1142/S0218271815500996
57 S. Bhattacharya, A note on entropy of de Sitter black holes, Eur. Phys. J. C 76(3), 112 (2016)
https://doi.org/10.1140/epjc/s10052-016-3955-6
58 D. Kubizňák and F. Simovic, Thermodynamics of horizons: de Sitter black holes and reentrant phase transitions, Class. Quantum Gravity 33(24), 245001 (2016)
https://doi.org/10.1088/0264-9381/33/24/245001
59 M. Khuri and E. Woolgar, Nonexistence of extremal de Sitter black rings, Class. Quantum Gravity 34(22), 22LT01 (2017)
https://doi.org/10.1088/1361-6382/aa9154
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed