Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2018, Vol. 13 Issue (5): 137205   https://doi.org/10.1007/s11467-018-0814-y
  本期目录
A critical path approach for elucidating the temperature dependence of granular hopping conduction
Tsz Chun Wu1, Juhn-Jong Lin2,3, Ping Sheng1()
1. Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
2. Institute of Physics and Department of Electrophysics, Chiao Tung University, Hsinchu 30010, Taiwan, China
3. Center for Emergent Functional Matter Science, Chiao Tung University, Hsinchu 30010, Taiwan, China
 全文: PDF(511 KB)  
Abstract

We revisit the classical problem of granular hopping conduction’s σ∝exp[–(T0/T)] temperature dependence, where σ denotes conductivity, T is temperature, and T0 is a sample-dependent constant. By using the hopping conduction formulation in conjunction with the incorporation of the random potential that has been shown to exist in insulator-conductor composites, it is demonstrated that the widely observed temperature dependence of granular hopping conduction emerges very naturally through the immediate-neighbor critical-path argument. Here, immediate-neighbor pairs are defined to be those where a line connecting two grains does not cross or by-pass other grains, and the critical-path argument denotes the derivation of sample conductance based on the geometric percolation condition that is marked by the critical conduction path in a random granular composite. Simulations based on the exact electrical network evaluation of finite-sample conductance show that the configurationaveraged results agree well with those obtained using the immediate-neighbor critical-path method. Furthermore, the results obtained using both these methods show good agreement with experimental data on hopping conduction in a sputtered metal-insulator composite Agx(SnO2)1–x, where x denotes the metal volume fraction. The present approach offers a relatively straightforward and simple explanation for the temperature behavior that has been widely observed over diverse material systems, but which has remained a puzzle in spite of the various efforts made to explain this phenomenon.

Key wordsgranular hopping conduction    insulator-conductor composites    critical path method    immediate-neighbor hopping
收稿日期: 2018-06-19      出版日期: 2018-07-18
Corresponding Author(s): Ping Sheng   
 引用本文:   
. [J]. Frontiers of Physics, 2018, 13(5): 137205.
Tsz Chun Wu, Juhn-Jong Lin, Ping Sheng. A critical path approach for elucidating the temperature dependence of granular hopping conduction. Front. Phys. , 2018, 13(5): 137205.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-018-0814-y
https://academic.hep.com.cn/fop/CN/Y2018/V13/I5/137205
1 B. Abeles, P. Sheng, M. D. Coutts, and Y. Arie, Structural and electrical properties of granular metal films, Adv. Phys. 24(3), 407 (1975)
https://doi.org/10.1080/00018737500101431
2 C. J. Adkins, Conduction in granular metals-ariablerange hopping in a Coulomb gap? J. Phys.: Condens. Matter 1(7), 1253 (1989)
https://doi.org/10.1088/0953-8984/1/7/009
3 P. Sheng, B. Abeles, and Y. Arie, Hopping conductivity in granular metals, Phys. Rev. Lett. 31(1), 44 (1973)
https://doi.org/10.1103/PhysRevLett.31.44
4 S. Barzilai, Y. Goldstein, I. Balberg, and J. S. Helman, Magnetic and transport properties of granular cobalt films, Phys. Rev. B 23(4), 1809 (1981)
https://doi.org/10.1103/PhysRevB.23.1809
5 S. P. McAlister, A. D. Inglis, and P. M. Kayll, Conduction in cosputtered Au-SiO2 films, Phys. Rev. B 31(8), 5113 (1985)
https://doi.org/10.1103/PhysRevB.31.5113
6 S. P. McAlister, A. D. Inglis, and D. R. Kroeker, Crossover between hopping and tunnelling conduction in Au-SiO2 films, J. Phys. C 17(28), L751 (1984)
7 H. Bakkali and M. Dominguez, Differential conductance of Pd-ZrO2 thin granular films prepared by RF magnetron sputtering, Europhys. Lett. 104(1), 17007 (2013)
https://doi.org/10.1209/0295-5075/104/17007
8 V. F. Gantmakher, Electrons and Disorder in Solids, Oxford: Clarendon, 2005
https://doi.org/10.1093/acprof:oso/9780198567561.001.0001
9 Y. N. Wu, Y. F. Wei, Z. Q. Li, and J. J. Lin, Granular hopping conduction in (Ag, Mo)x(SnO2)1–x films in the dielectric regime, arXiv: 1708.04434 (2017)
10 N. F. Mott, Conduction in glasses containing transition metal ions, J. Non-crystal. Solids 1(1), 1 (1968)
11 N. F. Mott and E. A. Davis, Electronic Processes in Non-Crystalline Materials, Oxford: Clarendon, 1979
12 A. L. Efros and B. I. Shklovskii, Coulomb gap and low temperature conductivity of disordered systems, J. Phys. C 8(4), L49 (1975)
https://doi.org/10.1088/0022-3719/8/4/003
13 A. L. Efros, Coulomb gap in disordered systems, J. Phys. C 9(11), 2021 (1976)
https://doi.org/10.1088/0022-3719/9/11/012
14 B. I. Shklovskii and A. L. Efros, Electronic Properties of Doped Semiconductors, New York: Springer, 1984
15 A. Miller and E. Abrahams, Impurity conduction at low concentrations, Phys. Rev. 120(3), 745 (1960)
https://doi.org/10.1103/PhysRev.120.745
16 V. Ambegaokar, B. I. Halperin, and J. S. Langer, Hopping conductivity in disordered systems, Phys. Rev. B 4(8), 2612 (1971)
https://doi.org/10.1103/PhysRevB.4.2612
17 V. K. S. Shante, Variable-range hopping conduction in thin films, Phys. Lett. A 43(3), 249 (1973)
https://doi.org/10.1016/0375-9601(73)90292-2
18 V. K. S. Shante, Hopping conduction in quasi-onedimensional disordered compounds, Phys. Rev. B 16(6), 2597 (1977)
https://doi.org/10.1103/PhysRevB.16.2597
19 C. J. Adkins, Conduction in granular metals with potential disorder, J. Phys. C 20(2), 235 (1987)
20 M. Pollak and C. J. Adkins, Conduction in granular metals, Philos. Mag. B 65(4), 855 (1992)
https://doi.org/10.1080/13642819208204926
21 C. J. Adkins, J. D. Benjamin, J. M. D. Thomas, J. W. Gardner, and A. J. McGeown, Potential disorder in granular metal systems: The field effect in discontinuous metal films, J. Phys. C 17(26), 4633 (1984)
22 A. J. McGeown and C. J. Adkins, Thermopower in discontinuous metal films, J. Phys. C 19(11), 1753 (1986)
https://doi.org/10.1088/0022-3719/19/11/013
23 R. E. Cavicchi and R. H. Silsbee, Coulomb suppression of tunneling rate from small metal particles, Phys. Rev. Lett. 52(16), 1453 (1984)
https://doi.org/10.1103/PhysRevLett.52.1453
24 J. W. Gardner and C. J. Adkins, Island charging energies and random potentials in discontinuous metal films, J. Phys. C 18(35), 6523 (1985)
https://doi.org/10.1088/0022-3719/18/35/017
25 R. A. Buhrman and C. G. Granqvist, Log-normal size distributions from magnetization measurements on small superconducting Al particles, J. Appl. Phys. 47(5), 2220 (1976)
https://doi.org/10.1063/1.322871
26 J. Zhang and B. I. Shklovskii, Density of states and conductivity of a granular metal or an array of quantum dots, Phys. Rev. B 70(11), 115317 (2004)
https://doi.org/10.1103/PhysRevB.70.115317
27 I. S. Beloborodov, A. V. Lopatin, and V. M. Vinokur, Coulomb effects and hopping transport in granular metals, Phys. Rev. B 72(12), 125121 (2005)
https://doi.org/10.1103/PhysRevB.72.125121
28 C. H. Lin and G. Y. Wu, Hopping conduction in granular metals, Physica B 279(4), 341 (2000)
https://doi.org/10.1016/S0921-4526(99)00757-7
29 K. B. Efetov and A. Tschersich, Coulomb effects in granular materials at not very low temperatures, Phys. Rev. B 67(A5), 174205 (2003)
https://doi.org/10.1103/PhysRevB.67.174205
30 T. Chui, G. Deutscher, P. Lindenfeld, and W. L. McLean, Conduction in granular aluminum near the metal-insulator transition, Phys. Rev. B 23(11), 6172 (1981)
https://doi.org/10.1103/PhysRevB.23.6172
31 Y. H. Lin, Y. C. Sun, W. B. Jian, H. M. Chang, Y. S. Huang, and J. J. Lin, Electrical transport studies of individual IrO2 nanorods and their nanorod contacts, Nanotechnology 19(4), 045711 (2008)
https://doi.org/10.1088/0957-4484/19/04/045711
32 P. Sheng and J. Klafter, Hopping conductivity in granular disordered systems, Phys. Rev. B 27(4), 2583 (1983)
https://doi.org/10.1103/PhysRevB.27.2583
33 J. Klafter and P. Sheng, The Coulomb quasigap and the metal-insulator transition in granular systems, J. Phys. C Solid State Phys. 17(3), L93 (1984)
https://doi.org/10.1088/0022-3719/17/3/006
34 C. J. Adkins, Hopping and Related Phenomena, Eds. H Fritzsche and M Pollak, Singapore: World Scientific, 1990, pp 93–109
https://doi.org/10.1142/9789814434447_0007
35 H. Zhang, J. Lu, W. Shi, Z. Wang, T. Zhang, M. Sun, Y. Zheng, Q. Chen, N. Wang, J. J. Lin, and P. Sheng, Large-scale mesoscopic transport in nanostructured graphene, Phys. Rev. Lett. 110(6), 066805 (2013)
https://doi.org/10.1103/PhysRevLett.110.066805
36 Y. L. Huang, S. P. Chiu, Z. X. Zhu, Z. Q. Li, and J. J. Lin, Variable-range-hopping conduction processes in oxygen deficient polycrystalline ZnO films, J. Appl. Phys. 107(6), 063715 (2010)
https://doi.org/10.1063/1.3357376
37 M. V. Feigel’man and A. S. Ioselevich, Variable-range cotunneling and conductivity of a granular metal, JETP Lett. 81(6), 277 (2005)
https://doi.org/10.1134/1.1931015
38 C. H. Lin and G. Y. Wu, Percolation calculation with non-nearest neighbor hopping of hopping resistances for granular metals, Thin Solid Films 397(1–2), 280 (2001)
https://doi.org/10.1016/S0040-6090(01)01402-X
39 P. Sheng, Introduction to Wave Scattering, Localization and Mesoscopic Phenomena, Heidelberg: Springer, 2006
40 G. E. Pike and C. H. Seager, Percolation and conductivity: A computer study (I), Phys. Rev. B 10(4), 1421 (1974)
https://doi.org/10.1103/PhysRevB.10.1421
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed