Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2018, Vol. 13 Issue (5): 134209   https://doi.org/10.1007/s11467-018-0826-7
  本期目录
Engineering multipartite steady entanglement of distant atoms via dissipation
Zhao Jin1, S.-L. Su2, Ai-Dong Zhu3, Hong-Fu Wang3, Shou Zhang1,3()
1. Department of Physics, Harbin Institute of Technology, Harbin 150001, China
2. School of Physics and Engineering, Zhengzhou University, Zhengzhou 450001, China
3. Department of Physics, College of Science, Yanbian University, Yanji, Jilin 133002, China
 全文: PDF(2432 KB)  
Abstract

We propose a scheme for generating an entangled state for three atoms trapped in separate optical cavities that are coupled to each other through two optical fibers based on coherent driving and dissipation, which are induced by the classical fields and the decay of non-local bosonic modes, respectively. In our scheme, the interaction time need not be controlled strictly in the overall dynamics process, and the cavity field decay can be changed into a vital resource. The numerical simulation shows that the fidelity of the target state is insensitive to atomic spontaneous emission, and our scheme is good enough to generate the W state of distant atoms with a high fidelity and purity. In addition, the present scheme can also be generalized to prepare the N-partite W state of distant atoms.

Key wordssteady-state entanglement    dissipative dynamics    laser manipulation
收稿日期: 2018-03-26      出版日期: 2018-09-10
Corresponding Author(s): Shou Zhang   
 引用本文:   
. [J]. Frontiers of Physics, 2018, 13(5): 134209.
Zhao Jin, S.-L. Su, Ai-Dong Zhu, Hong-Fu Wang, Shou Zhang. Engineering multipartite steady entanglement of distant atoms via dissipation. Front. Phys. , 2018, 13(5): 134209.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-018-0826-7
https://academic.hep.com.cn/fop/CN/Y2018/V13/I5/134209
1 A. Einstein, B. Podolsky, and N. Rosen, Can quantummechanical description of physical reality be considered complete? Phys. Rev. 47(10), 777 (1935)
https://doi.org/10.1103/PhysRev.47.777
2 D. Bohm, Quantum Theory, Prentice-Hall, Englewood Cliffs, NJ, 1951
3 J. I. Cirac and P. Zoller, Quantum computations with cold trapped ions, Phys. Rev. Lett. 74(20), 4091 (1995)
https://doi.org/10.1103/PhysRevLett.74.4091
4 I. E. Protsenko, G. Reymond, N. Schlosser, and P. Grangier, Conditional quantum logic using two atomic qubits, Phys. Rev. A 66(6), 062306 (2002)
https://doi.org/10.1103/PhysRevA.66.062306
5 N. A. Gershenfeld and I. L. Chuang, Bulk spinresonance quantum computation, Science 275(5298), 350 (1997)
https://doi.org/10.1126/science.275.5298.350
6 P. Domokos, J. M. Raimond, M. Brune, and S. Haroche, Simple cavity-QED two-bit universal quantum logic gate: The principle and expected performances, Phys. Rev. A 52(5), 3554 (1995)
https://doi.org/10.1103/PhysRevA.52.3554
7 Y. Makhlin, G. Schön, and A. Shnirman, Quantumstate engineering with Josephson-junction devices, Rev. Mod. Phys. 73(2), 357 (2001)
https://doi.org/10.1103/RevModPhys.73.357
8 D. Loss and D. P. DiVincenzo, Quantum computation with quantum dots, Phys. Rev. A 57(1), 120 (1998)
https://doi.org/10.1103/PhysRevA.57.120
9 N. D. Mermin, Extreme quantum entanglement in a superposition of macroscopically distinct states, Phys. Rev. Lett. 65(15), 1838 (1990)
https://doi.org/10.1103/PhysRevLett.65.1838
10 D. Collins, N. Gisin, S. Popescu, D. Roberts, and V. Scarani, Bell-type inequalities to detect true n-body nonseparability, Phys. Rev. Lett. 88(17), 170405 (2002)
https://doi.org/10.1103/PhysRevLett.88.170405
11 M. D. Reid, Q. Y. He, and P. D. Drummond, Entanglement and nonlocality in multi-particle systems, Front. Phys. 7(1), 72 (2012)
https://doi.org/10.1007/s11467-011-0233-9
12 M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, 2000
13 A. Karlsson and M. Bourennane, Quantum teleportation using three-particle entanglement, Phys. Rev. A 58(6), 4394 (1998)
https://doi.org/10.1103/PhysRevA.58.4394
14 P. Y. Xiong, X. T. Yu, H. T. Zhan, and Z. C. Zhang, Multiple teleportation via partially entangled GHZ state, Front. Phys. 11(4), 110303 (2016)
https://doi.org/10.1007/s11467-016-0553-x
15 M. D. G. Ramírez, B. J. Falaye, G. H. Sun, M. Cruz-Irisson, and S. H. Dong, Quantum teleportation and information splitting via four-qubit cluster state and a Bell state, Front. Phys. 12(5), 120306 (2017)
https://doi.org/10.1007/s11467-017-0684-8
16 R. Cleve, D. Gottesman, and H. K. Lo, How to share a quantum secret, Phys. Rev. Lett. 83(3), 648 (1999)
https://doi.org/10.1103/PhysRevLett.83.648
17 M. Hillery, V. Bužek, and A. Berthiaume, Quantum secret sharing, Phys. Rev. A 59(3), 1829 (1999)
https://doi.org/10.1103/PhysRevA.59.1829
18 D. M. Greenberger, M. A. Horne, A. Shimony, and A. Zeilinger, Bell’s theorem without inequalities, Am. J. Phys. 58(12), 1131 (1990)
https://doi.org/10.1119/1.16243
19 W. Dür, G. Vidal, and J. I. Cirac, Three qubits can be entangled in two inequivalent ways, Phys. Rev. A 62(6), 062314 (2000)
https://doi.org/10.1103/PhysRevA.62.062314
20 A. Cabello, Two qubits of a W state violate Bell’s inequality beyond Cirel’son’s bound, Rev. Rev. A 66(4), 042114 (2002)
https://doi.org/10.1103/PhysRevA.66.042114
21 S. L. Su, Y. Z. Tian, H. Z. Shen, H. P. Zang, E. J. Liang, and S. Zhang, Applications of the modified Rydberg antiblockade regime with simultaneous driving, Phys. Rev. A 96(4), 042335 (2017)
https://doi.org/10.1103/PhysRevA.96.042335
22 S. L. Su, Y. Gao, E. J. Liang, and S. Zhang, Fast Rydberg antiblockade regime and its applications in quantum logic gates, Phys. Rev. A 95(2), 022319 (2017)
https://doi.org/10.1103/PhysRevA.95.022319
23 S. L. Su, E. J. Liang, S. Zhang, J. J. Wen, L. L. Sun, Z. Jin, and A. D. Zhu, One-step implementation of the Rydberg–Rydberg-interaction gate, Phys. Rev. A 93(1), 012306 (2016)
https://doi.org/10.1103/PhysRevA.93.012306
24 M. B. Plenio, S. F. Huelga, A. Beige, and P. L. Knight, Cavity-loss-induced generation of entangled atoms, Phys. Rev. A 59(3), 2468 (1999)
https://doi.org/10.1103/PhysRevA.59.2468
25 S. Clark, A. Peng, M. Gu, and S. Parkins, unconditional preparation of entanglement between atoms in cascaded optical cavities, Phys. Rev. Lett. 91(17), 177901 (2003)
https://doi.org/10.1103/PhysRevLett.91.177901
26 J. Busch, S. De, S. S. Ivanov, B. T. Torosov, T. P. Spiller, and A. Beige, Cooling atom-cavity systems into entangled states, Phys. Rev. A 84(2), 022316 (2011)
https://doi.org/10.1103/PhysRevA.84.022316
27 M. J. Kastoryano, F. Reiter, and A. S. Sørensen, Dissipative preparation of entanglement in optical cavities, Phys. Rev. Lett. 106(9), 090502 (2011)
https://doi.org/10.1103/PhysRevLett.106.090502
28 F. Reiter, M. J. Kastoryano, and A. S. Sørensen, Driving two atoms in an optical cavity into an entangled steady state using engineered decay, New J. Phys. 14(5), 053022 (2012)
https://doi.org/10.1088/1367-2630/14/5/053022
29 L. T. Shen, X. Y. Chen, Z. B. Yang, H. Z. Wu, and S. B. Zheng, Steady-state entanglement for distant atoms by dissipation in coupled cavities, Phys. Rev. A 84(6), 064302 (2011)
https://doi.org/10.1103/PhysRevA.84.064302
30 L. T. Shen, X. Y. Chen, Z. B. Yang, H. Z. Wu, and S. B. Zheng, Distributed entanglement induced by dissipative bosonic media, Europhys. Lett. 99(2), 20003 (2012)
https://doi.org/10.1209/0295-5075/99/20003
31 L. T. Shen, X. Y. Chen, Z. B. Yang, H. Z. Wu, and S. B. Zheng, Cooling distant atoms into steady entanglement via coupled cavities, Quantum Inf. Comput. 13, 281 (2013)
32 L. T. Shen, X. Y. Chen, Z. B. Yang, H. Z. Wu, and S. B. Zheng, Preparation of two-qubit steady entanglement through driving a single qubit, Opt. Lett. 39(20), 6046 (2014)
https://doi.org/10.1364/OL.39.006046
33 S. L. Su, X. Q. Shao, H. F. Wang, and S. Zhang, Scheme for entanglement generation in an atom-cavity system via dissipation, Phys. Rev. A 90(5), 054302 (2014)
https://doi.org/10.1103/PhysRevA.90.054302
34 S. L. Su, Q. Guo, H. F. Wang, and S. Zhang, Simplified scheme for entanglement preparation with Rydberg pumping via dissipation, Phys. Rev. A 92(2), 022328 (2015)
https://doi.org/10.1103/PhysRevA.92.022328
35 S. B. Zheng and L. T. Shen, Generation and stabilization of maximal entanglement between two atomic qubits coupled to a decaying resonator, J. Phys. At. Mol. Opt. Phys. 47(5), 055502 (2014)
https://doi.org/10.1088/0953-4075/47/5/055502
36 X. Q. Shao, T. Y. Zheng, C. H. Oh, and S. Zhang, Dissipative creation of three-dimensional entangled state in optical cavity via spontaneous emission, Phys. Rev. A 89(1), 012319 (2014)
https://doi.org/10.1103/PhysRevA.89.012319
37 X. Q. Shao, J. B. You, T. Y. Zheng, C. H. Oh, and S. Zhang, Stationary three-dimensional entanglement via dissipative Rydberg pumping, Phys. Rev. A 89(5), 052313 (2014)
https://doi.org/10.1103/PhysRevA.89.052313
38 J. Song, X. D. Sun, Q. X. Mu, L. L. Zhang, Y. Xia, and H. S. Song, Direct conversion of a four-atom Wstate to a Greenberger–Horne–Zeilinger state via a dissipative process, Phys. Rev. A 88(2), 024305 (2013)
https://doi.org/10.1103/PhysRevA.88.024305
39 P. B. Li, S. Y. Gao, H. R. Li, S. L. Ma, and F. L. Li, Dissipative preparation of entangled states between two spatially separated nitrogen-vacancy centers, Phys. Rev. A 85(4), 042306 (2012)
https://doi.org/10.1103/PhysRevA.85.042306
40 C. Li, S. Yang, J. Song, Y. Xia, and W. Q. Ding, Generation of long-living entanglement between two distant three-level atoms in non-Markovian environments, Opt. Express 25(10), 10961 (2017)
https://doi.org/10.1364/OE.25.010961
41 S. L. Ma, Z. Y. Liao, F. L. Li, and M. S. Zubairy, Dissipative production of controllable steady-state entanglement of two superconducting qubits in separated resonators, Europhys. Lett. 110(4), 40004 (2015)
https://doi.org/10.1209/0295-5075/110/40004
42 A. S. Parkins, E. Solano, and J. I. Cirac, Unconditional two-mode squeezing of separated atomic ensembles, Phys. Rev. Lett. 96(5), 053602 (2006)
https://doi.org/10.1103/PhysRevLett.96.053602
43 C. A. Muschik, E. S. Polzik, and J. I. Cirac, Dissipatively driven entanglement of two macroscopic atomic ensembles, Phys. Rev. A 83(5), 052312 (2011)
https://doi.org/10.1103/PhysRevA.83.052312
44 E. G. Dalla Torre, J. Otterbach, E. Demler, V. Vuletic, and M. D. Lukin, Dissipative preparation of spin squeezed atomic ensembles in a steady state, Phys. Rev. Lett. 110(12), 120402 (2013)
https://doi.org/10.1103/PhysRevLett.110.120402
45 J. F. Poyatos, J. I. Cirac, and P. Zoller, Quantum reservoir engineering with laser cooled trapped ions, Phys. Rev. Lett. 77(23), 4728 (1996)
https://doi.org/10.1103/PhysRevLett.77.4728
46 J. Cho, S. Bose, and M. S. Kim, Optical pumping into manybody entanglement, Phys. Rev. Lett. 106(2), 020504 (2011)
https://doi.org/10.1103/PhysRevLett.106.020504
47 J. T. Barreiro, M. Muller, P. Schindler, D. Nigg, T. Monz, M. Chwalla, M. Hennrich, C. F. Roos, P. Zoller, and R. Blatt, An open-system quantum simulator with trapped ions, Nature 470(7335), 486 (2011)
https://doi.org/10.1038/nature09801
48 A. Gonzalez-Tudela, D. Martín-Cano, E. Moreno, L. Martin-Moreno, C. Tejedor, and F. J. Garcia-Vidal, Entanglement of two qubits mediated by one-dimensional plasmonic waveguides, Phys. Rev. Lett. 106(2), 020501 (2011)
https://doi.org/10.1103/PhysRevLett.106.020501
49 M. Gullans, T. G. Tiecke, D. E. Chang, J. Feist, J. D. Thompson, J. I. Cirac, P. Zoller, and M. D. Lukin, Nanoplasmonic lattices for ultracold atoms, Phys. Rev. Lett. 109(23), 235309 (2012)
https://doi.org/10.1103/PhysRevLett.109.235309
50 A. González-Tudela and D. Porras, Mesoscopic entanglement induced by spontaneous emission in solid-state quantum optics, Phys. Rev. Lett. 110(8), 080502 (2013)
https://doi.org/10.1103/PhysRevLett.110.080502
51 S. Diehl, A. Micheli, A. Kantian, B. Kraus, H. P. Büchler, and P. Zoller, Quantum states and phases in driven open quantum systems with cold atoms, Nat. Phys. 4(11), 878 (2008)
52 M. Foss-Feig, A. J. Daley, J. K. Thompson, and A. M. Rey, Steady-state many-body entanglement of hot reactive fermions, Phys. Rev. Lett. 109(23), 230501 (2012)
https://doi.org/10.1103/PhysRevLett.109.230501
53 D. X. Li, X. Q. Shao, J. H. Wu, and X. X. Yi, Dissipation-induced W state in a Rydberg-atom-cavity system, Opt. Lett. 43(8), 1639 (2018)
https://doi.org/10.1364/OL.43.001639
54 F. Reiter, D. Reeb, and A. S. Sørensen, Scalable dissipative preparation of many-body entanglement, Phys. Rev. Lett. 117(4), 040501 (2016)
https://doi.org/10.1103/PhysRevLett.117.040501
55 X. Q. Shao, J. H. Wu, X. X. Yi, and G. L. Long, Dissipative preparation of steady Greenberger–Horne–Zeilinger states for Rydberg atoms with quantum Zeno dynamics, Phys. Rev. A 96(6), 062315 (2017)
https://doi.org/10.1103/PhysRevA.96.062315
56 G. D. de Moraes Neto, V. F. Teizen, V. Montenegro, and E. Vernek, Steady many-body entanglements in dissipative systems, Phys. Rev. A 96(6), 062313 (2017)
https://doi.org/10.1103/PhysRevA.96.062313
57 J. Song, C. Li, Z. J. Zhang, Y. Y. Jiang, and Y. Xia, Implementing stabilizer codes in noisy environments? Phys. Rev. A 96(3), 032336 (2017)
https://doi.org/10.1103/PhysRevA.96.032336
58 I. Cohen and K. Mølmer, Deterministic quantum network for distributed entanglement and quantum computation, arXiv: 1802.08124 (2018)
59 J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, Quantum state transfer and entanglement distribution among distant nodes in a quantum network, Phys. Rev. Lett. 78(16), 3221 (1997)
https://doi.org/10.1103/PhysRevLett.78.3221
60 T. Pellizzari, Quantum networking with optical fibres, Phys. Rev. Lett. 79(26), 5242 (1997)
https://doi.org/10.1103/PhysRevLett.79.5242
61 G. W. Lin, X. B. Zou, X. M. Lin, and G. C. Guo, Scalable, high-speed one-way quantum computer in coupledcavity arrays, Appl. Phys. Lett. 95(22), 224102 (2009)
https://doi.org/10.1063/1.3269600
62 K. Zhang and Z. Y. Li, Transfer behavior of quantum states between atoms in photonic crystal coupled cavities, Phys. Rev. A 81(3), 033843 (2010)
https://doi.org/10.1103/PhysRevA.81.033843
63 M. Notomi, E. Kuramochi, and T. Tanabe, Large-scale arrays of ultrahigh-Qcoupled nanocavities, Nat. Photonics 2(12), 741 (2008)
https://doi.org/10.1038/nphoton.2008.226
64 S. B. Zheng, Generation of Greenberger–Horne– Zeilinger states for multiple atoms trapped in separated cavities, Eur. Phys. J. D 54(3), 719 (2009)
https://doi.org/10.1140/epjd/e2009-00190-9
65 S. B. Zheng, C. P. Yang, and F. Nori, Arbitrary control of coherent dynamics for distant qubits in a quantum network, Phys. Rev. A 82(4), 042327 (2010)
https://doi.org/10.1103/PhysRevA.82.042327
66 H. F. Wang, A. D. Zhu, and S. Zhang, One-step implementation of a multiqubit phase gate with one control qubit and multiple target qubits in coupled cavities, Opt. Lett. 39(6), 1489 (2014)
https://doi.org/10.1364/OL.39.001489
67 X. Q. Shao, Z. H. Wang, H. D. Liu, and X. X. Yi, Dissipative preparation of a tripartite singlet state in coupled arrays of cavities via quantum feedback control, Phys. Rev. A 94(3), 032307 (2016)
https://doi.org/10.1103/PhysRevA.94.032307
68 M. J. Hartmann, F. G. S. L. Brandão, and M. B. Plenio, Strongly interacting polaritons in coupled arrays of cavities, Nat. Phys. 2(12), 849 (2006)
69 D. Daems and S. Guérin, Adiabatic quantum search scheme with atoms in a cavity driven by lasers, Phys. Rev. Lett. 99(17), 170503 (2007)
https://doi.org/10.1103/PhysRevLett.99.170503
70 S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics, Phys. Rev. Lett. 91(4), 043902 (2003)
https://doi.org/10.1103/PhysRevLett.91.043902
71 P. E. Barclay, K. Srinivasan, O. Painter, B. Lev, and H. Mabuchi, Integration of fiber-coupled high-Q SiNx microdisks with atom chips, Appl. Phys. Lett. 89(13), 131108 (2006)
https://doi.org/10.1063/1.2356892
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed