Modulation of the electronic states of perovskite SrCrO3 thin films through protonation via low-energy hydrogen plasma implantation approaches
Meng Wu1, Shanquan Chen2, Chuanwei Huang2(), Xing Ye3, Haiping Zhou3, Xiaochun Huang4, Kelvin H. L. Zhang4(), Wensheng Yan5, Lihua Zhang6, Kisslinger Kim6, Yingge Du7, Scott Chambers7, Jin-Cheng Zheng1, Hui-Qiong Wang1()
1. Fujian Provincial Key Laboratory of Semiconductors and Applications, Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Department of Physics, Xiamen University, Xiamen 361005, China 2. Shenzhen Key Laboratory of Special Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China 3. School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China 4. State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China 5. National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China 6. Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973-5000, USA 7. Physical Sciences Division, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA
Hydrogenation of transition metal oxides offers a powerful platform to tailor physical functionalities as well as for potential applications in modern electronic technologies. An ideal nondestructive and efficient hydrogen incorporation approach is important for the realistic technological applications. We demonstrate the proton injection on SrCrO3 thin films via an efficient low-energy hydrogen plasma implantation experiments, without destroying the original lattice framework. Hydrogen ions accumulate largely at the interfacial regions with amorphous character which extend about one-third of the total thickness. The HxSrCrO3 (HSCO) thin films appear like exfoliated layers which however retain the fully strained state with distorted perovskite structure. Proton doping induces the change of Cr oxidation state from Cr4+ to Cr3+ in HSCO thin films and a transition from metallic to insulating phase. Our investigations suggest an attractive platform in manipulating the electronic phases in proton-based approaches and may offer a potential peeling off strategy for nanoscale devices through low-energy hydrogen plasma implantation approaches.
Corresponding Author(s):
Chuanwei Huang,Kelvin H. L. Zhang,Hui-Qiong Wang
引用本文:
. [J]. Frontiers of Physics, 2020, 15(1): 13601.
Meng Wu, Shanquan Chen, Chuanwei Huang, Xing Ye, Haiping Zhou, Xiaochun Huang, Kelvin H. L. Zhang, Wensheng Yan, Lihua Zhang, Kisslinger Kim, Yingge Du, Scott Chambers, Jin-Cheng Zheng, Hui-Qiong Wang. Modulation of the electronic states of perovskite SrCrO3 thin films through protonation via low-energy hydrogen plasma implantation approaches. Front. Phys. , 2020, 15(1): 13601.
J. L. Zhang and G. C. Shan, Stacking control in graphenebased materials: A promising method for fascinating physical properties, Front. Phys. 14(2), 23301 (2019) https://doi.org/10.1007/s11467-018-0871-2
2
T. Chatterji, S. Rols, and U. D. Wdowik, Dynamics of the phase-change material GeTe across the structural phase transition, Front. Phys. 14(2), 23601 (2019) https://doi.org/10.1007/s11467-018-0864-1
3
R. Wang, X. G. Ren, Z. Yan, L. J. Jiang, W. E. I. Sha, and G. C. Shan, Graphene based functional devices: A short review, Front. Phys. 14(1), 13603 (2019) https://doi.org/10.1007/s11467-018-0859-y
4
S. Q. Luo, J. F. Wang, B. Yang, and Y. B. Yuan, Recent advances in controlling the crystallization of twodimensional perovskites for optoelectronic device, Front. Phys. 14(5), 53401 (2019) https://doi.org/10.1007/s11467-019-0901-8
5
T.-H. Han, S. Tan, J. Xue, L. Meng, J.-W. Lee, and Y. Yang, Interface and defect engineering for metal halide perovskite optoelectronic devices, Adv. Mater. 1803515 (2019) https://doi.org/10.1002/adma.201803515
J. M. D. Coey, M. Venkatesan, and C. B. Fitzgerald, Donor impurity band exchange in dilute ferromagnetic oxides, Nat. Mater. 4(2), 173 (2005) https://doi.org/10.1038/nmat1310
9
H. Y. Hwang, Y. Iwasa, M. Kawasaki, B. Keimer, N. Nagaosa, and Y. Tokura, Emergent phenomena at oxide interfaces, Nat. Mater. 11(2), 103 (2012) https://doi.org/10.1038/nmat3223
10
Y. Kobayashi, O. J. Hernandez, T. Sakaguchi, T. Yajima, T. Roisnel, Y. Tsujimoto, M. Morita, Y. Noda, Y. Mogami, A. Kitada, M. Ohkura, S. Hosokawa, Z. Li, K. Hayashi, Y. Kusano, J. Kim, N. Tsuji, A. Fujiwara, Y. Matsushita, K. Yoshimura, K. Takegoshi, M. Inoue, M. Takano, and H. Kageyama, An oxyhydride of BaTiO3 exhibiting hydride exchange and electronic conductivity, Nat. Mater. 11(6), 507 (2012) https://doi.org/10.1038/nmat3302
11
M. A. Hayward, E. J. Cussen, J. B. Claridge, M. Bieringer, M. J. Rosseinsky, C. J. Kiely, S. J. Blundell, I. M. Marshall, and F. L. Pratt, The hydride anion in an extended transition metal oxide array: LaSrCoO3H0.7, Science 295(5561), 1882 (2002)
12
F. Denis Romero, A. Leach, J. S. Möller, F. Foronda, S. J. Blundell, and M. A. Hayward, Strontium vanadium oxide-hydrides: “Square-planar” two-electron phases, Angew. Chem. Int. Ed. 53(29), 7556 (2014) https://doi.org/10.1002/anie.201403536
13
C. Tassel, Y. Goto, Y. Kuno, J. Hester, M. Green, Y. Kobayashi, and H. Kageyama, Direct synthesis of chromium perovskite oxyhydride with a high magnetictransition temperature, Angew. Chem. Int. Ed. 53(39), 10377 (2014) https://doi.org/10.1002/anie.201405453
14
Y. Kobayashi, O. Hernandez, C. Tassel, and H. Kageyama, New chemistry of transition metal oxyhydrides, Sci. Technol. Adv. Mater. 18(1), 905 (2017) https://doi.org/10.1080/14686996.2017.1394776
15
N. Lu, P. Zhang, Q. Zhang, R. Qiao, Q. He, H. B. Li, Y. Wang, J. Guo, D. Zhang, Z. Duan, Z. Li, M. Wang, S. Yang, M. Yan, E. Arenholz, S. Zhou, W. Yang, L. Gu, C. W. Nan, J. Wu, Y. Tokura, and P. Yu, Electric-field control of tri-state phase transformation with a selective dual-ion switch, Nature 546(7656), 124 (2017) https://doi.org/10.1038/nature22389
16
M. Jo, H. J. Lee, C. Oh, H. Yoon, J. Y. Jo, and J. Son, Gate-induced massive and reversible phase transition of VO2 channels using solid-state proton electrolytes, Adv. Funct. Mater. 28(39), 1802003 (2018) https://doi.org/10.1002/adfm.201802003
17
H. Yoon, M. Choi, T. W. Lim, H. Kwon, K. Ihm, J. K. Kim, S. Y. Choi, and J. Son, Reversible phase modulation and hydrogen storage in multivalent VO2 epitaxial thin films, Nat. Mater. 15(10), 1113 (2016) https://doi.org/10.1038/nmat4692
18
M. A. Hope, K. J. Griffith, B. Cui, F. Gao, S. E. Dutton, S. S. P. Parkin, and C. P. Grey, The role of ionic liquid breakdown in the electrochemical metallization of VO2: An NMR study of gating mechanisms and VO2 reduction, J. Am. Chem. Soc. 140(48), 16685 (2018) https://doi.org/10.1021/jacs.8b09513
19
K. A. Smith, A. I. Savva, C. Deng, J. P. Wharry, S. Hwang, D. Su, Y. Wang, J. Gong, T. Xu, D. P. Butt, and H. Xiong, Effects of proton irradiation on structural and electrochemical charge storage properties of TiO2 nanotube electrodes for lithium-ion batteries, J. Mater. Chem. A 5(23), 11815 (2017) https://doi.org/10.1039/C7TA01026E
20
K. H. L. Zhang, P. V. Sushko, R. Colby, Y. Du, M. E. Bowden, and S. A. Chambers, Reversible nanostructuring of SrCrO3−d through oxidation and reduction at low temperature, Nat. Commun. 5(1), 4669 (2014) https://doi.org/10.1038/ncomms5669
J. S. Zhou, C. Q. Jin, Y. W. Long, L. X. Yang, and J. B. Goodenough, Anomalous electronic state in CaCrO3 and SrCrO3, Phys. Rev. Lett. 96(4), 046408 (2006) https://doi.org/10.1103/PhysRevLett.96.046408
23
L. Ortega-San-Martin, A. J. Williams, J. Rodgers, J. P. Attfield, G. Heymann, and H. Huppertz, Microstrain sensitivity of orbital and electronic phase separation in Sr-CrO3, Phys. Rev. Lett. 99(25), 255701 (2007) https://doi.org/10.1103/PhysRevLett.99.255701
24
K. H. L. Zhang, Y. Du, P. V. Sushko, M. E. Bowden, V. Shutthanandan, L. Qiao, G. Cao, Z. Gai, S. Sallis, L. Piper, and S. A. Chambers, Electronic and magnetic properties of epitaxial perovskite SrCrO3(001), J. Phys.: Condens. Matter 27(24), 245605 (2015) https://doi.org/10.1088/0953-8984/27/24/245605
25
H. P. Zhou, X. Ye, W. Huang, M. Q. Wu, L. N. Mao, B. Yu, S. Xu, I. Levchenko, and K. Bazaka, Wearable, flexible, disposable plasma-reduced graphene oxide stress sensors for monitoring activities in austere environments, ACS Appl. Mater. Interfaces 11(16), 15122 (2019) https://doi.org/10.1021/acsami.8b22673
26
I. Levchenko, K. Bazaka, M. Keidar, S. Xu, and J. Fang, Hierarchical multicomponent inorganic metamaterials: Intrinsically driven self-assembly at the nanoscale, Adv. Mater. 30(2), 1702226 (2018) https://doi.org/10.1002/adma.201702226
27
O. Baranov, I. Levchenko, J. M. Bell, J. W. M. Lim, S. Huang, L. Xu, B. Wang, D. U. B. Aussems, S. Xu, and K. Bazaka, From nanometre to millimetre: A range of capabilities for plasma-enabled surface functionalization and nanostructuring, Mater. Horiz. 5(5), 765 (2018) https://doi.org/10.1039/C8MH00326B
28
I. Levchenko, K. Bazaka, T. Belmonte, M. Keidar, and S. Xu, Advanced materials for next-generation spacecraft, Adv. Mater. 30(50), 1802201 (2018) https://doi.org/10.1002/adma.201802201
29
I. Levchenko, S. Xu, G. Teel, D. Mariotti, M. L. R. Walker, and M. Keidar, Recent progress and perspectives of space electric propulsion systems based on smart nanomaterials, Nat. Commun. 9(1), 879 (2018) https://doi.org/10.1038/s41467-018-03818-4
30
I. Levchenko, M. Keidar, J. Cantrell, Y. L. Wu, H. Kuninaka, K. Bazaka, and S. Xu, Explore space using swarms of tiny satellites, Nature 562(7726), 185 (2018) https://doi.org/10.1038/d41586-018-06957-2
31
H. P. Zhou, D. Y. Wei, S. Xu, S. Q. Xiao, L. X. Xu, S. Y. Huang, Y. N. Guo, S. Khan, and M. Xu, Crystalline silicon surface passivation by intrinsic silicon thin films deposited by low-frequency inductively coupled plasma, J. Appl. Phys. 112(1), 013708 (2012) https://doi.org/10.1063/1.4733701
32
M. Losurdo, P. Capezzuto, G. Bruno, and E. A. Irene, Chemistry and kinetics of the GaN formation by plasma nitridation of GaAs: An in situreal-time ellipsometric study, Phys. Rev. B 58(23), 15878 (1998) https://doi.org/10.1103/PhysRevB.58.15878
33
K. H. L. Zhang, Y. Du, P. V. Sushko, M. E. Bowden, V. Shutthanandan, S. Sallis, L. F. J. Piper, and S. A. Chambers, Hole-induced insulator-to-metal transition in La1−xSrxCrO3 epitaxial films, Phys. Rev. B 91(15), 155129 (2015) https://doi.org/10.1103/PhysRevB.91.155129
34
D. D. Sarma, K. Maiti, E. Vescovo, C. Carbone, W. Eberhardt, O. Rader, and W. Gudat, Investigation of holedoped insulating La1−xSrxCrO3 by soft-X-ray absorption spectroscopy, Phys. Rev. B 53(20), 13369 (1996) https://doi.org/10.1103/PhysRevB.53.13369
35
G. van der Laan, J. Zaanen, G. A. Sawatzky, R. Karnatak, and J. M. Esteva, Comparison of X-ray absorption with X-ray photoemission of nickel dihalides and NiO, Phys. Rev. B 33(6), 4253 (1986) https://doi.org/10.1103/PhysRevB.33.4253
36
M. W. Haverkort, M. Zwierzycki, and O. K. Andersen, Multiplet ligand-field theory using Wannier orbitals, Phys. Rev. B 85(16), 165113 (2012) https://doi.org/10.1103/PhysRevB.85.165113
37
M. W. Haverkort, Quanty- a quantum many body script language, 2016
38
M. Wu, H. L. Xin, J. O. Wang, X. J. Li, X. B. Yuan, H. Zeng, J. C. Zheng, and H. Q. Wang, Investigation of the multiplet features of SrTiO3 in X-ray absorption spectra based on configuration interaction calculations, J. Synchrotron Radiat. 25(3), 777 (2018) https://doi.org/10.1107/S160057751800423X
39
M. Wu, J. C. Zheng, and H. Q. Wang, Investigation of the vanadium L23-edge X-ray absorption spectrum of SrVO3 using configuration interaction calculations: Multiplet, valence, and crystal-field effects, Phys. Rev. B 97(24), 245138 (2018) https://doi.org/10.1103/PhysRevB.97.245138
40
T. Saitoh, A. E. Bocquet, T. Mizokawa, and A. Fujimori, Systematic variation of the electronic structure of 3 dtransition-metal compounds, Phys. Rev. B 52(11), 7934 (1995) https://doi.org/10.1103/PhysRevB.52.7934
41
A. E. Bocquet, T. Mizokawa, K. Morikawa, A. Fujimori, S. R. Barman, K. Maiti, D. D. Sarma, Y. Tokura, and M. Onoda, Electronic structure of early 3d-transition-metal oxides by analysis of the 2p core-level photoemission spectra, Phys. Rev. B 53(3), 1161 (1996) https://doi.org/10.1103/PhysRevB.53.1161
42
J. Suntivich, W. T. Hong, Y. L. Lee, J. M. Rondinelli, W. Yang, J. B. Goodenough, B. Dabrowski, J. W. Freeland, and Y. Shao-Horn, Estimating hybridization of transition metal and oxygen states in perovskites from OK-edge Xray absorption spectroscopy, J. Phys. Chem. C 118(4), 1856 (2014) https://doi.org/10.1021/jp410644j
43
X. Liu, Y. J. Wang, B. Barbiellini, H. Hafiz, S. Basak, J. Liu, T. Richardson, G. Shu, F. Chou, T. C. Weng, D. Nordlund, D. Sokaras, B. Moritz, T. P. Devereaux, R. Qiao, Y. D. Chuang, A. Bansil, Z. Hussain, and W. Yang, Why LiFePO4 is a safe battery electrode: Coulomb repulsion induced electron-state reshuffling upon lithiation, Phys. Chem. Chem. Phys. 17(39), 26369 (2015) https://doi.org/10.1039/C5CP04739K
44
Y. Zhou, X. Guan, H. Zhou, K. Ramadoss, S. Adam, H. Liu, S. Lee, J. Shi, D. D. Tsuchiya, M. Fong, and S. Ramanathan, Strongly correlated perovskite fuel cells, Nature 534(7606), 231 (2016) https://doi.org/10.1038/nature17653
45
S. J. Li, Y. T. Zhou, X. Kang, D. X. Liu, L. Gu, Q. H. Zhang, J. M. Yan, and Q. Jiang, A simple and effective principle for a rational design of heterogeneous catalysts for dehydrogenation of formic acid, Adv. Mater. 31(15), 1806781 (2019) https://doi.org/10.1002/adma.201806781
46
I. Abdelwahab, P. Dichtl, G. Grinblat, K. Leng, X. Chi, I. H. Park, M. P. Nielsen, R. F. Oulton, K. P. Loh, and S. A. Maier, Giant and tunable optical nonlinearity in singlecrystalline 2D perovskites due to excitonic and plasma effects, Adv. Mater. 31(29), 1902685 (2019) https://doi.org/10.1002/adma.201902685