Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2020, Vol. 15 Issue (1): 13401   https://doi.org/10.1007/s11467-019-0942-z
  本期目录
Visualizing quantum phenomena at complex oxide interfaces: An atomic view from scanning transmission electron microscopy
Hangwen Guo1(), Mohammad Saghayezhian2, Zhen Wang2,3, Yimei Zhu3, Jiandi Zhang2, Ward Plummer2()
1. Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, Shanghai 200433, China
2. Department of Physics & Astronomy, Louisiana State University, Baton Rouge, LA 70803
3. Condensed Matter Physics & Materials Science Department, Brookhaven National Laboratory, Upton, NY 11973
 全文: PDF(4176 KB)  
Abstract

Complex oxide interfaces have been one of the central focuses in condensed matter physics and material science. Over the past decade, aberration corrected scanning transmission electron microscopy and spectroscopy has proven to be invaluable to visualize and understand the emerging quantum phenomena at an interface. In this paper, we briefly review some recent progress in the utilization of electron microscopy to probe interfaces. Specifically, we discuss several important challenges for electron microscopy to advance our understanding on interface phenomena, from the perspective of variable temperature, magnetism, electron energy loss spectroscopy analysis, electronic symmetry, and defects probing.

Key wordscomplex oxide interfaces    scanning transmission electron microscopy    electron energy loss spectroscopy
收稿日期: 2019-09-10      出版日期: 2019-12-12
Corresponding Author(s): Hangwen Guo,Ward Plummer   
 引用本文:   
. [J]. Frontiers of Physics, 2020, 15(1): 13401.
Hangwen Guo, Mohammad Saghayezhian, Zhen Wang, Yimei Zhu, Jiandi Zhang, Ward Plummer. Visualizing quantum phenomena at complex oxide interfaces: An atomic view from scanning transmission electron microscopy. Front. Phys. , 2020, 15(1): 13401.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-019-0942-z
https://academic.hep.com.cn/fop/CN/Y2020/V15/I1/13401
1 H. Y. Hwang, Y. Iwasa, M. Kawasaki, B. Keimer, N. Nagaosa, and Y. Tokura, Emergent phenomena at oxide interfaces, Nat. Mater. 11(2), 103 (2012)
https://doi.org/10.1038/nmat3223
2 J. Chakhalian, A. J. Millis, and J. Rondinelli, Whither the oxide interface, Nat. Mater. 11(2), 92 (2012)
https://doi.org/10.1038/nmat3225
3 J. Mannhart and D. G. Schlom, Oxide interfaces- an opportunity for electronics, Science 327(5973), 1607 (2010)
https://doi.org/10.1126/science.1181862
4 M. Bibes, J. E. Villegas, and A. Barthélémy, Ultrathin oxide films and interfaces for electronics and spintronics, Adv. Phys. 60(1), 5 (2011)
https://doi.org/10.1080/00018732.2010.534865
5 P. Zubko, S. Gariglio, M. Gabay, P. Ghosez, and J. M. Triscone, Interface physics in complex oxide heterostructures, Annu. Rev. Condens. Matter Phys. 2(1), 141 (2011)
https://doi.org/10.1146/annurev-conmatphys-062910-140445
6 M. Coll, J. Fontcuberta, M. Althammer, M. Bibes, H. Boschker, et al., Towards oxide electronics: A roadmap, Appl. Surf. Sci. 482, 1 (2019)
https://doi.org/10.1016/j.apsusc.2019.03.312
7 M. Huijben, P. Yu, L. W. Martin, H. J. A. Molegraaf, Y. H. Chu, M. B. Holcomb, N. Balke, G. Rijnders, and R. Ramesh, Ultrathin limit of exchange bias coupling at oxide multiferroic/ferromagnetic interfaces, Adv. Mater. 25(34), 4739 (2013)
https://doi.org/10.1002/adma.201300940
8 S. M. Wu, S. A. Cybart, P. Yu, M. D. Rossell, J. X. Zhang, R. Ramesh, and R. C. Dynes, Reversible electric control of exchange bias in a multiferroic field-effect device, Nat. Mater. 9(9), 756 (2010)
https://doi.org/10.1038/nmat2803
9 M. Gibert, P. Zubko, R. Scherwitzl, J. Íñiguez, and J. M. Triscone, Exchange bias in LaNiO3–LaMnO3 superlattices, Nat. Mater. 11(3), 195 (2012)
https://doi.org/10.1038/nmat3224
10 C. Cen, S. Thiel, J. Mannhart, and J. Levy, Oxide nanoelectronics on demand, Science 323(5917), 1026 (2009)
https://doi.org/10.1126/science.1168294
11 A. Ohtomo and H. Y. Hwang, A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface, Nature 427(6973), 423 (2004)
https://doi.org/10.1038/nature02308
12 S. Thiel, G. Hammerl, A. Schmehl, C. W. Schneider, and J. Mannhart, Tunable quasi-two-dimensional electron gases in oxide heterostructures, Science 313(5795), 1942 (2006)
https://doi.org/10.1126/science.1131091
13 N. Reyren, S. Thiel, A. D. Caviglia, L. F. Kourkoutis, G. Hammerl, C. Richter, C. W. Schneider, T. Kopp, A. S. Rüetschi, D. Jaccard, M. Gabay, D. A. Muller, J. M. Triscone, and J. Mannhart, Superconducting interfaces between insulating oxides, Science 317(5842), 1196 (2007)
https://doi.org/10.1126/science.1146006
14 J. Zhang, Z. Zhong, X. Guan, X. Shen, J. Zhang, F. Han, H. Zhang, H. Zhang, X. Yan, Q. Zhang, L. Gu, F. Hu, R. Yu, B. Shen, and J. Sun, Symmetry mismatch-driven perpendicular magnetic anisotropy for perovskite/brownmillerite heterostructures, Nat. Commun. 9(1), 1923 (2018)
https://doi.org/10.1038/s41467-018-04304-7
15 C. L. Jia, S. B. Mi, M. Faley, U. Poppe, J. Schubert, and K. Urban, Oxygen octahedron reconstruction in the SrTiO3/LaAlO3 heterointerfaces investigated using aberration-corrected ultrahigh-resolution transmission electron microscopy, Phys. Rev. B 79(8), 081405 (2009)
https://doi.org/10.1103/PhysRevB.79.081405
16 M. Salluzzo, J. C. Cezar, N. B. Brookes, V. Bisogni, G. M. De Luca, C. Richter, S. Thiel, J. Mannhart, M. Huijben, A. Brinkman, G. Rijnders, and G. Ghiringhelli, Orbital reconstruction and the two-dimensional electron gas at the LaAlO3/SrTiO3 interface, Phys. Rev. Lett. 102(16), 166804 (2009)
https://doi.org/10.1103/PhysRevLett.102.166804
17 J. Chakhalian, J. W. Freeland, H. U. Habermeier, G. Cristiani, G. Khaliullin, M. van Veenendaal, and B. Keimer, Orbital reconstruction and covalent bonding at an oxide interface, Science 318(5853), 1114 (2007)
https://doi.org/10.1126/science.1149338
18 H. J. A. Molegraaf, J. Hoffman, C. A. F. Vaz, S. Gariglio, D. van der Marel, C. H. Ahn, and J. M. Triscone, Magnetoelectric effects in complex oxides with competing ground states, Adv. Mater. 21(34), 3470 (2009)
https://doi.org/10.1002/adma.200900278
19 C. A. F. Vaz, J. Hoffman, C. H. Ahn, and R. Ramesh, Magnetoelectric coupling effects in multiferroic complex oxide composite structures, Adv. Mater. 22(26–27), 2900 (2010)
https://doi.org/10.1002/adma.200904326
20 C. A. F. Vaz, Electric field control of magnetism in multiferroic heterostructures, J. Phys.: Condens. Matter 24(33), 333201 (2012)
https://doi.org/10.1088/0953-8984/24/33/333201
21 W. Eerenstein, N. D. Mathur, and J. F. Scott, Multiferroic and magnetoelectric materials, Nature 442(7104), 759 (2006)
https://doi.org/10.1038/nature05023
22 S. Dong, J. M. Liu, S. W. Cheong, and Z. Ren, Multiferroic materials and magnetoelectric physics: Symmetry, entanglement, excitation, and topology, Adv. Phys. 64(5–6), 519 (2015)
https://doi.org/10.1080/00018732.2015.1114338
23 W. Huang, Y. Yin, and X. Li, Atomic-scale mapping of interface reconstructions in multiferroic heterostructures, Appl. Phys. Rev. 5(4), 041110 (2018)
https://doi.org/10.1063/1.5053426
24 H. Kroemer, Quasielectric fields and band offsets: Teaching electrons new tricks, Rev. Mod. Phys. 73(3), 783 (2001)
https://doi.org/10.1103/RevModPhys.73.783
25 D. P. Norton, Synthesis and properties of epitaxial electronic oxide thin-film materials, Mater. Sci. Eng. Rep. 43(5–6), 139 (2004)
https://doi.org/10.1016/j.mser.2003.12.002
26 P. R. Willmott, Deposition of complex multielemental thin films, Prog. Surf. Sci. 76(6–8), 163 (2004)
https://doi.org/10.1016/j.progsurf.2004.06.001
27 M. N. R. Ashfold, F. Claeyssens, G. M. Fuge, and S. J. Henley, Pulsed laser ablation and deposition of thin films, Chem. Soc. Rev. 33(1), 23 (2004)
https://doi.org/10.1039/b207644f
28 H. M. Christen and G. Eres, Recent advances in pulsedlaser deposition of complex oxides, J. Phys.: Condens. Matter 20(26), 264005 (2008)
https://doi.org/10.1088/0953-8984/20/26/264005
29 H. Guo, D. Sun, W. Wang, Z. Gai, I. Kravchenko, J. Shao, L. Jiang, T. Z. Ward, P. C. Snijders, L. Yin, J. Shen, and X. Xu, Growth diagram of La0.7Sr0.3MnO3 thin films using pulsed laser deposition, J. Appl. Phys. 113(23), 234301 (2013)
https://doi.org/10.1063/1.4811187
30 M. Varela, A. R. Lupini, K. Benthem, A. Y. Borisevich, M. F. Chisholm, N. Shibata, E. Abe, and S. J. Pennycook, Materials characterization in the aberration-corrected scanning transmission electron microscope, Annu. Rev. Mater. Res. 35(1), 539 (2005)
https://doi.org/10.1146/annurev.matsci.35.102103.090513
31 R. F. Egerton, Electron energy-loss spectroscopy in the TEM, Rep. Prog. Phys. 72(1), 016502 (2009)
https://doi.org/10.1088/0034-4885/72/1/016502
32 F. Hofer, F. P. Schmidt, W. Grogger, and G. Kothleitner, Fundamentals of electron energy-loss spectroscopy, IOP Conf. Series Mater. Sci. Eng. 109, 012007 (2016)
https://doi.org/10.1088/1757-899X/109/1/012007
33 Y. Cao, X. Liu, M. Kareev, D. Choudhury, S. Middey, D. Meyers, J. W. Kim, P. J. Ryan, J. W. Freeland, and J. Chakhalian, Engineered Mott ground state in a LaTiO3+δ/LaNiO3 heterostructure, Nat. Commun. 7(1), 10418 (2016)
https://doi.org/10.1038/ncomms10418
34 X. Chi, Z. Huang, T. C. Asmara, K. Han, X. Yin, X. Yu, C. Diao, M. Yang, D. Schmidt, P. Yang, P. E. Trevisanutto, T. J. Whitcher, T. Venkatesan, M. B. H. Breese, Ariando, and A. Rusydi, Large enhancement of 2D electron gases mobility induced by interfacial localized electron screening effect, Adv. Mater. 30(22), 1707428 (2018)
https://doi.org/10.1002/adma.201707428
35 G. Fabbris, N. Jaouen, D. Meyers, J. Feng, J. D. Hoffman, R. Sutarto, S. G. Chiuzbǎian, A. Bhattacharya, and M. P. M. Dean, Emergent c-axis magnetic helix in manganite-nickelate superlattices, Phys. Rev. B 98(18), 180401 (2018)
https://doi.org/10.1103/PhysRevB.98.180401
36 F. Y. Bruno, M. N. Grisolia, C. Visani, S. Valencia, M. Varela, R. Abrudan, J. Tornos, A. Rivera-Calzada, A. A. Ünal, S. J. Pennycook, Z. Sefrioui, C. Leon, J. E. Villegas, J. Santamaria, A. Barthélémy, and M. Bibes, Insight into spin transport in oxide heterostructures from interfaceresolved magnetic mapping, Nat. Commun. 6(1), 6306 (2015)
https://doi.org/10.1038/ncomms7306
37 X. Zhai, L. Cheng, Y. Liu, C. M. Schlepütz, S. Dong, H. Li, X. Zhang, S. Chu, L. Zheng, J. Zhang, A. Zhao, H. Hong, A. Bhattacharya, J. N. Eckstein, and C. Zeng, Correlating interfacial octahedral rotations with magnetism in (LaMnO3+δ)N/(SrTiO3)N superlattices, Nat. Commun. 5(1), 4283 (2014)
https://doi.org/10.1038/ncomms5283
38 A. Rubano, G. De Luca, J. Schubert, Z. Wang, S. Zhu, D. G. Schlom, L. Marrucci, and D. Paparo, Polar asymmetry of La1−δAl1+δO3/SrTiO3 heterostructures probed by optical second harmonic generation, Appl. Phys. Lett. 107(10), 101603 (2015)
https://doi.org/10.1063/1.4930881
39 S. Middey, P. Rivero, D. Meyers, M. Kareev, X. Liu, Y. Cao, J. W. Freeland, S. Barraza-Lopez, and J. Chakhalian, Polarity compensation in ultra-thin films of complex oxides: The case of a perovskite nickelate, Sci. Rep. 4(1), 6819 (2015)
https://doi.org/10.1038/srep06819
40 D. Paparo, A. Rubano, and L. Marrucci, Optical secondharmonic generation selection rules and resonances in buried oxide interfaces: The case of LaAlO3/SrTiO3, J. Opt. Soc. Am. B 30(9), 2452 (2013)
https://doi.org/10.1364/JOSAB.30.002452
41 C. Cancellieri and V. Strocov (Eds.), Spectroscopy of Complex Oxide Interfaces, Springer International Publishing, 2018
https://doi.org/10.1007/978-3-319-74989-1
42 M. Fiebig, Phase engineering in oxides by interfaces, Philos. Trans. Royal Soc.: Math. Phys. Eng. Sci. 370(1977), 4972 (2012)
https://doi.org/10.1098/rsta.2012.0204
43 S. J. Pennycook and P. D. Nellist (Eds.), Scanning Transmission Electron Microscopy, 1st Ed., Springer-Verlag, New York, 2011
https://doi.org/10.1007/978-1-4419-7200-2
44 S. J. Pennycook, M. F. Chisholm, A. R. Lupini, M. Varela, A. Y. Borisevich, M. P. Oxley, W. D. Luo, K. van Benthem, S. H. Oh, D. L. Sales, S. I. Molina, J. García-Barriocanal, C. Leon, J. Santamaría, S. N. Rashkeev, and S. T. Pantelides, Aberration-corrected scanning transmission electron microscopy: From atomic imaging and analysis to solving energy problems, Philos. Trans. Royal Soc.: Math. Phys. Eng. Sci. 367(1903), 3709 (2009)
https://doi.org/10.1098/rsta.2009.0112
45 S. J. Pennycook, Seeing the atoms more clearly: STEM imaging from the Crewe era to today, Ultramicroscopy 123, 28 (2012)
https://doi.org/10.1016/j.ultramic.2012.05.005
46 Z. Yu, D. A. Muller, and J. Silcox, Study of strain fields at a-Si/c-Si interface, J. Appl. Phys. 95(7), 3362 (2004)
https://doi.org/10.1063/1.1649463
47 P. J. Phillips, M. De Graef, L. Kovarik, A. Agrawal, W. Windl, and M. J. Mills, Atomic-resolution defect contrast in low angle annular dark-field STEM, Ultramicroscopy 116, 47 (2012)
https://doi.org/10.1016/j.ultramic.2012.03.013
48 Y. Zhu, H. Inada, K. Nakamura, and J. Wall, Imaging single atoms using secondary electrons with an aberrationcorrected electron microscope, Nat. Mater. 8(10), 808 (2009)
https://doi.org/10.1038/nmat2532
49 H. Inada, K. Tamura, K. Nakamura, Y. Suzuki, M. Konno, D. Su, J. Wall, R. Egerton, and Y. Zhu, Atomic resolved secondary electron imaging with an aberration corrected scanning transmission electron microscope, Microsc. Microanal. 17(S2), 1298 (2011)
https://doi.org/10.1017/S1431927611007367
50 J. A. Hachtel, J. C. Idrobo, and M. Chi, Sub-Ångstrom electric field measurements on a universal detector in a scanning transmission electron microscope, Adv. Struct. Chem. Imaging 4(1), 10 (2018)
https://doi.org/10.1186/s40679-018-0059-4
51 S. Das, Y. L. Tang, Z. Hong, M. A. P. Gonçalves, M. R. McCarter, et al., Observation of room-temperature polar skyrmions, Nature 568(7752), 368 (2019)
https://doi.org/10.1038/s41586-019-1092-8
52 C. Ophus, Four-dimensional scanning transmission electron microscopy (4D-STEM): From scanning nanodiffraction to ptychography and beyond, Microsc. Microanal. 25(3), 563 (2019)
https://doi.org/10.1017/S1431927619000497
53 P. Gao, R. Ishikawa, B. Feng, A. Kumamoto, N. Shibata, and Y. Ikuhara, Atomic-scale structure relaxation, chemistry and charge distribution of dislocation cores in SrTiO3, Ultramicroscopy 184, 217 (2018)
https://doi.org/10.1016/j.ultramic.2017.09.006
54 M. B. Salamon and M. Jaime, The physics of manganites: Structure and transport, Rev. Mod. Phys. 73(3), 583 (2001)
https://doi.org/10.1103/RevModPhys.73.583
55 G. Koster, L. Klein, W. Siemons, G. Rijnders, J. S. Dodge, C. B. Eom, D. H. A. Blank, and M. R. Beasley, Structure, physical properties, and applications of Sr-RuO3 thin films, Rev. Mod. Phys. 84(1), 253 (2012)
https://doi.org/10.1103/RevModPhys.84.253
56 J. Kim, Y. Kim, Y. S. Kim, J. Lee, L. Kim, and D. Jung, Large nonlinear dielectric properties of artificial BaTiO3/SrTiO3 superlattices, Appl. Phys. Lett. 80(19), 3581 (2002)
https://doi.org/10.1063/1.1477934
57 M. H. Whangbo, E. E. Gordon, J. L. Jr Bettis, A. Bussmann-Holder, and J. Köhler, Tolerance factor and cation–anion orbital interactions differentiating the polar and antiferrodistortive structures of perovskite oxides ABO3, Z. Anorg. Allg. Chem. 641(6), 1043 (2015)
https://doi.org/10.1002/zaac.201500058
58 W. Zhong and D. Vanderbilt, Competing structural istabilities in cubic perovskites, Phys. Rev. Lett. 74(13), 2587 (1995)
https://doi.org/10.1103/PhysRevLett.74.2587
59 U. Aschauer and N. A. Spaldin, Competition and cooperation between antiferrodistortive and ferroelectric instabilities in the model perovskite SrTiO3, J. Phys.: Condens. Matter 26(12), 122203 (2014)
https://doi.org/10.1088/0953-8984/26/12/122203
60 J. M. Rondinelli, S. J. May, and J. W. Freeland, Control of octahedral connectivity in perovskite oxide heterostructures: An emerging route to multifunctional materials discovery, MRS Bull. 37(3), 261 (2012)
https://doi.org/10.1557/mrs.2012.49
61 H. Guo, Z. Wang, S. Dong, S. Ghosh, M. Saghayezhian, L. Chen, Y. Weng, A. Herklotz, T. Z. Ward, R. Jin, S. T. Pantelides, Y. Zhu, Jiandi Zhang, and E. W. Plummer, Interface-induced multiferroism by design in complex oxide superlattices, Proc. Natl. Acad. Sci. USA 114(26), E5062 (2017)
https://doi.org/10.1073/pnas.1706814114
62 J. H. Lee, L. Fang, E. Vlahos, X. Ke, Y. W. Jung, L. F. Kourkoutis, J. W. Kim, P. J. Ryan, T. Heeg, M. Roeckerath, V. Goian, M. Bernhagen, R. Uecker, P. C. Hammel, K. M. Rabe, S. Kamba, J. Schubert, J. W. Freeland, D. A. Muller, C. J. Fennie, P. Schiffer, V. Gopalan, E. Johnston-Halperin, and D. G. Schlom, A strong ferroelectric ferromagnet created by means of spin-lattice coupling, Nature 466(7309), 954 (2010)
https://doi.org/10.1038/nature09331
63 Z. Liao, M. Huijben, Z. Zhong, N. Gauquelin, S. Macke, R. J. Green, S. Van Aert, J. Verbeeck, G. Van Tendeloo, K. Held, G. A. Sawatzky, G. Koster, and G. Rijnders, Controlled lateral anisotropy in correlated manganite heterostructures by interface-engineered oxygen octahedral coupling, Nat. Mater. 15(4), 425 (2016)
https://doi.org/10.1038/nmat4579
64 D. Kan, R. Aso, R. Sato, M. Haruta, H. Kurata, and Y. Shimakawa, Tuning magnetic anisotropy by interfacially engineering the oxygen coordination environment in a transition metal oxide, Nat. Mater. 15(4), 432 (2016)
https://doi.org/10.1038/nmat4580
65 E. J. Guo, R. Desautels, D. Lee, M. A. Roldan, Z. Liao, T. Charlton, H. Ambaye, J. Molaison, R. Boehler, D. Keavney, A. Herklotz, T. Z. Ward, H. N. Lee, and M. R. Fitzsimmons, Exploiting symmetry mismatch to control magnetism in a ferroelastic heterostructure, Phys. Rev. Lett. 122(18), 187202 (2019)
https://doi.org/10.1103/PhysRevLett.122.187202
66 Y. Zhu, K. Du, J. Niu, L. Lin, W. Wei, H. Liu, H. Lin, K. Zhang, T. Yang, Y. Kou, J. Shao, X. Gao, X. Xu, X. Wu, S. Dong, L. Yin, and J. Shen, Chemical ordering suppresses large-scale electronic phase separation in doped manganites, Nat. Commun. 7(1), 11260 (2016)
https://doi.org/10.1038/ncomms11260
67 J. A. Mundy, C. M. Brooks, M. E. Holtz, J. A. Moyer, H. Das, A. F. Rébola, J. T. Heron, J. D. Clarkson, S. M. Disseler, Z. Liu, A. Farhan, R. Held, R. Hovden, E. Padgett, Q. Mao, H. Paik, R. Misra, L. F. Kourkoutis, E. Arenholz, A. Scholl, J. A. Borchers, W. D. Ratcliff, R. Ramesh, C. J. Fennie, P. Schiffer, D. A. Muller, and D. G. Schlom, Atomically engineered ferroic layers yield a room-temperature magnetoelectric multiferroic, Nature 537(7621), 523 (2016)
https://doi.org/10.1038/nature19343
68 Y. Cao, Z. Wang, S. Y. Park, Y. Yuan, X. Liu, S. M. Nikitin, H. Akamatsu, M. Kareev, S. Middey, D. Meyers, P. Thompson, P. J. Ryan, P. Shafer, A. N’Diaye, E. Arenholz, V. Gopalan, Y. Zhu, K. M. Rabe, and J. Chakhalian, Artificial two-dimensional polar metal at room temperature, Nat. Commun. 9(1), 1547 (2018)
https://doi.org/10.1038/s41467-018-03964-9
69 G. Koster, M. Huijben, and G. Rijnders (Eds.), Epitaxial Growth of Complex Metal Oxides, 1st Ed., Elsevier, Woodhead Publishing, 2015
70 D. B. Chrisey and G. K. Hubler, Pulse Laser Deposition of Thin Films, John Wiley & Sons Inc., Hoboken, 1994
71 I. V. Markov, Crystal Growth for Beginners: Fundamentals of Nucleation, Crystal Growth and Epitaxy, 2nd Ed., World Scientific Publishing Company, 2003
https://doi.org/10.1142/9789812796899
72 N. Nakagawa, H. Y. Hwang, and D. A. Muller, Why some interfaces cannot be sharp, Nat. Mater. 5(3), 204 (2006)
https://doi.org/10.1038/nmat1569
73 J. A. Mundy, Y. Hikita, T. Hidaka, T. Yajima, T. Higuchi, H. Y. Hwang, D. A. Muller, and L. F. Kourkoutis, Visualizing the interfacial evolution from charge compensation to metallic screening across the manganite metal–insulator transition, Nat. Commun. 5(1), 3464 (2014)
https://doi.org/10.1038/ncomms4464
74 M. Gibert, M. Viret, A. Torres-Pardo, C. Piamonteze, P. Zubko, N. Jaouen, J. M. Tonnerre, A. Mougin, J. Fowlie, S. Catalano, A. Gloter, O. Stéphan, and J. M. Triscone, Interfacial control of magnetic properties at LaMnO3/LaNiO3 interfaces, Nano Lett. 15(11), 7355 (2015)
https://doi.org/10.1021/acs.nanolett.5b02720
75 S. R. Spurgeon, P. V. Balachandran, D. M. Kepaptsoglou, A. R. Damodaran, J. Karthik, S. Nejati, L. Jones, H. Ambaye, V. Lauter, Q. M. Ramasse, K. K. S. Lau, L. W. Martin, J. M. Rondinelli, and M. L. Taheri, Polarization screening-induced magnetic phase gradients at complex oxide interfaces, Nat. Commun. 6(1), 6735 (2015)
https://doi.org/10.1038/ncomms7735
76 J. H. Lee, G. Luo, I. C. Tung, S. H. Chang, Z. Luo, M. Malshe, M. Gadre, A. Bhattacharya, S. M. Nakhmanson, J. A. Eastman, H. Hong, J. Jellinek, D. Morgan, D. D. Fong, and J. W. Freeland, Dynamic layer rearrangement during growth of layered oxide films by molecular beam epitaxy, Nat. Mater. 13(9), 879 (2014)
https://doi.org/10.1038/nmat4039
77 M. Arredondo, M. Saunders, A. Petraru, H. Kohlstedt, I. Vrejoiu, M. Alexe, D. Hesse, N. D. Browning, P. Munroe, and V. Nagarajan, Structural defects and local chemistry across ferroelectric–electrode interfaces in epitaxial heterostructures, J. Mater. Sci. 44(19), 5297 (2009)
https://doi.org/10.1007/s10853-009-3548-y
78 L. F. Kourkoutis, D. A. Muller, Y. Hotta, and H. Y. Hwang, Asymmetric interface profiles in LaVO3/SrTiO3 heterostructures grown by pulsed laser deposition, Appl. Phys. Lett. 91(16), 163101 (2007)
https://doi.org/10.1063/1.2798060
79 M. P. Warusawithana, C. Richter, J. A. Mundy, P. Roy, J. Ludwig, S. Paetel, T. Heeg, A. A. Pawlicki, L. F. Kourkoutis, M. Zheng, M. Lee, B. Mulcahy, W. Zander, Y. Zhu, J. Schubert, J. N. Eckstein, D. A. Muller, C. S. Hellberg, J. Mannhart, and D. G. Schlom, LaAlO3 stoichiometry is key to electron liquid formation at LaAlO3/SrTiO3 interfaces, Nat. Commun. 4(1), 2351 (2013)
https://doi.org/10.1038/ncomms3351
80 M. Sing, G. Berner, K. Goβ, A. Müller, A. Ruff, A. Wetscherek, S. Thiel, J. Mannhart, S. A. Pauli, C. W. Schneider, P. R. Willmott, M. Gorgoi, F. Schäfers, and R. Claessen, Profiling the interface electron gas of LaAlO3/SrTiO3 heterostructures with hard X-ray photoelectron spectroscopy, Phys. Rev. Lett. 102(17), 176805 (2009)
https://doi.org/10.1103/PhysRevLett.102.176805
81 J. A. Bert, B. Kalisky, C. Bell, M. Kim, Y. Hikita, H. Y. Hwang, and K. A. Moler, Direct imaging of the coexistence of ferromagnetism and superconductivity at the LaAlO3/SrTiO3 interface, Nat. Phys. 7(10), 767 (2011)
https://doi.org/10.1038/nphys2079
82 Z. Zhong, P. X. Xu, and P. J. Kelly, Polarity-induced oxygen vacancies at LaAlO3/SrTiO3 interfaces, Phys. Rev. B 82(16), 165127 (2010)
https://doi.org/10.1103/PhysRevB.82.165127
83 P. Maksymovych, M. Huijben, M. Pan, S. Jesse, N. Balke, Y. H. Chu, H. J. Chang, A. Y. Borisevich, A. P. Baddorf, G. Rijnders, D. H. A. Blank, R. Ramesh, and S. V. Kalinin, Ultrathin limit and dead-layer effects in local polarization switching of BiFeO3, Phys. Rev. B 85(1), 014119 (2012)
https://doi.org/10.1103/PhysRevB.85.014119
84 J. Xia, W. Siemons, G. Koster, M. R. Beasley, and A. Kapitulnik, Critical thickness for itinerant ferromagnetism in ultrathin films of SrRuO3, Phys. Rev. B 79(14), 140407 (2009)
https://doi.org/10.1103/PhysRevB.79.140407
85 M. Huijben, L. W. Martin, Y. H. Chu, M. B. Holcomb, P. Yu, G. Rijnders, D. H. A. Blank, and R. Ramesh, critical thickness and orbital ordering in ultrathin La0.7Sr0.3MnO3 films, Phys. Rev. B 78(9), 094413 (2008)
https://doi.org/10.1103/PhysRevB.78.094413
86 J. Junquera and P. Ghosez, Critical thickness for ferroelectricity in perovskite ultrathin films, Nature 422(6931), 506 (2003)
https://doi.org/10.1038/nature01501
87 Z. Liao, F. Li, P. Gao, L. Li, J. Guo, X. Pan, R. Jin, E. W. Plummer, and Jiandi Zhang, Origin of the metalinsulator transition in ultrathin films of La2/3Sr1/3MnO3, Phys. Rev. B 92(12), 125123 (2015)
https://doi.org/10.1103/PhysRevB.92.125123
88 E. J. Guo, M. A. Roldan, T. Charlton, Z. Liao, Q. Zheng, H. Ambaye, A. Herklotz, Z. Gai, T. Z. Ward, H. N. Lee, and M. R. Fitzsimmons, Removal of the magnetic dead layer by geometric design, Adv. Funct. Mater. 28(30), 1800922 (2018)
https://doi.org/10.1002/adfm.201800922
89 G. Wang, Z. Wang, M. Meng, M. Saghayezhian, L. Chen, C. Chen, H. Guo, Y. Zhu, E. W. Plummer, and Jiandi Zhang, Role of disorder and correlations in the metalinsulator transition in ultrathin SrVO3 films, Phys. Rev. B 100(15), 155114 (2019)
https://doi.org/10.1103/PhysRevB.100.155114
90 L. Chen, Z. Wang, G. Wang, H. Guo, M. Saghayezhian, J. Tao, Y. Zhu, E. W. Plummer, and J. Zhang, Surface and interface properties of La2/3Sr1/3MnO3 thin films on SrTiO3 (001), Phys. Rev. Mater. 3(4), 044407 (2019)
https://doi.org/10.1103/PhysRevMaterials.3.044407
91 J. F. Ge, Z. L. Liu, C. Liu, C. L. Gao, D. Qian, Q. K. Xue, Y. Liu, and J. F. Jia, Superconductivity above 100 K in single-layer FeSe films on doped SrTiO3, Nat. Mater. 14(3), 285 (2015)
https://doi.org/10.1038/nmat4153
92 W. Zhao, M. Li, C.-Z. Chang, J. Jiang, L. Wu, C. Liu, J. S. Moodera, Y. Zhu, and M. H. W. Chan, Direct imaging of electron transfer and its influence on superconducting pairing at FeSe/SrTiO3 interface, Sci. Adv. 4(3), eaao2682 (2018)
https://doi.org/10.1126/sciadv.aao2682
93 Y. M. Kim, A. Morozovska, E. Eliseev, M. P. Oxley, R. Mishra, S. M. Selbach, T. Grande, S. T. Pantelides, S. V. Kalinin, and A. Y. Borisevich, Direct observation of ferroelectric field effect and vacancy-controlled screening at the BiFeO3/LaxSr1−xMnO3 interface, Nat. Mater. 13(11), 1019 (2014)
https://doi.org/10.1038/nmat4058
94 M. N. Grisolia, J. Varignon, G. Sanchez-Santolino, A. Arora, S. Valencia, M. Varela, R. Abrudan, E. Weschke, E. Schierle, J. E. Rault, J. P. Rueff, A. Barthelemy, J. Santamaria, and M. Bibes, Hybridization-controlled charge transfer and induced magnetism at correlated oxide interfaces, Nat. Phys. 12(5), 484 (2016)
https://doi.org/10.1038/nphys3627
95 M. Izumi, Y. Ogimoto, Y. Okimoto, T. Manako, P. Ahmet, K. Nakajima, T. Chikyow, M. Kawasaki, and Y. Tokura, Insulator-metal transition induced by interlayer coupling in La0.6Sr0.4MnO3/SrTiO3 superlattices, Phys. Rev. B 64(6), 064429 (2001)
https://doi.org/10.1103/PhysRevB.64.064429
96 S. Dong, X. Zhang, R. Yu, J. M. Liu, and E. Dagotto, Microscopic model for the ferroelectric field effect in oxide heterostructures, Phys. Rev. B 84(15), 155117 (2011)
https://doi.org/10.1103/PhysRevB.84.155117
97 L. Jiang, W. S. Choi, H. Jeen, S. Dong, Y. Kim, M. G. Han, Y. Zhu, S. V. Kalinin, E. Dagotto, T. Egami, and H. N. Lee, Tunneling electroresistance induced by interfacial phase transitions in ultrathin oxide heterostructures, Nano Lett. 13(12), 5837 (2013)
https://doi.org/10.1021/nl4025598
98 D. Lee, B. Chung, Y. Shi, G. Y. Kim, N. Campbell, F. Xue, K. Song, S. Y. Choi, J. P. Podkaminer, T. H. Kim, P. J. Ryan, J. W. Kim, T. R. Paudel, J. H. Kang, J. W. Spinuzzi, D. A. Tenne, E. Y. Tsymbal, M. S. Rzchowski, L. Q. Chen, J. Lee, and C. B. Eom, Isostructural metal-insulator transition in VO2, Science 362(6418), 1037 (2018)
https://doi.org/10.1126/science.aam9189
99 L. F. Kourkoutis, I. El Baggari, B. H. Savitzky, D. J. Baek, B. H. Goodge, R. Hovden, and M. J. Zachman, Aberration-corrected STEM/EELS at cryogenic temperatures, Microsc. Microanal. 23(S1), 428 (2017)
https://doi.org/10.1017/S1431927617002823
100 I. El Baggari, G. M. Stiehl, J. Waelder, D. C. Ralph, and L. F. Kourkoutis, Atomic-resolution Cryo-STEM imaging of a structural phase transition in TaTe2, Microsc. Microanal. 24(S1), 86 (2018)
https://doi.org/10.1017/S1431927618000922
101 I. El Baggari, D. J. Baek, B. H. Savitzky, M. J. Zachman, R. Hovden, and L. F. Kourkoutis, Low temperature electron microscopy of “charge-ordered” phases, Microsc. Microanal. 25(S2), 934 (2019)
https://doi.org/10.1017/S1431927619005403
102 I. El Baggari, B. H. Savitzky, A. S. Admasu, J. Kim, S. W. Cheong, R. Hovden, and L. F. Kourkoutis, Nature and evolution of incommensurate charge order in manganites visualized with cryogenic scanning transmission electron microscopy, Proc. Natl. Acad. Sci. USA 115(7), 1445 (2018)
https://doi.org/10.1073/pnas.1714901115
103 B. H. Goodge, D. J. Baek, and L. F. Kourkoutis, Direct electron detection for atomic resolution in situ EELS, Microsc. Microanal. 24(S1), 1844 (2018)
https://doi.org/10.1017/S1431927618009704
104 A. Brinkman, M. Huijben, M. van Zalk, J. Huijben, U. Zeitler, J. C. Maan, W. G. van der Wiel, G. Rijnders, D. H. A. Blank, and H. Hilgenkamp, Magnetic effects at the interface between non-magnetic oxides, Nat. Mater. 6(7), 493 (2007)
https://doi.org/10.1038/nmat1931
105 L. Wang, Q. Feng, Y. Kim, R. Kim, K. H. Lee, S. D. Pollard, Y. J. Shin, H. Zhou, W. Peng, D. Lee, W. Meng, H. Yang, J. H. Han, M. Kim, Q. Lu, and T. W. Noh, Ferroelectrically tunable magnetic skyrmions in ultrathin oxide heterostructures, Nat. Mater. 17(12), 1087 (2018)
https://doi.org/10.1038/s41563-018-0204-4
106 J. Matsuno, N. Ogawa, K. Yasuda, F. Kagawa, W. Koshibae, N. Nagaosa, Y. Tokura, and M. Kawasaki, Interface-driven topological Hall effect in SrRuO3/SrIrO3 bilayer, Sci. Adv. 2(7), e1600304 (2016)
https://doi.org/10.1126/sciadv.1600304
107 F. Hellman, A. Hoffmann, Y. Tserkovnyak, G. S. D. Beach, E. E. Fullerton, C. Leighton, A. H. MacDonald, D. C. Ralph, D. A. Arena, H. A. Dürr, P. Fischer, J. Grollier, J. P. Heremans, T. Jungwirth, A. V. Kimel, B. Koopmans, I. N. Krivorotov, S. J. May, A. K. Petford-Long, J. M. Rondinelli, N. Samarth, I. K. Schuller, A. N. Slavin, M. D. Stiles, O. Tchernyshyov, A. Thiaville, and B. L. Zink, Interface-induced phenomena in magnetism, Rev. Mod. Phys. 89(2), 025006 (2017)
https://doi.org/10.1103/RevModPhys.89.025006
108 C. Phatak, A. K. Petford-Long, and M. De Graef, Recent advances in Lorentz microscopy, Curr. Opin. Solid State Mater. Sci. 20(2), 107 (2016)
https://doi.org/10.1016/j.cossms.2016.01.002
109 D. T. Ngo and L. T. Kuhn, In situ transmission electron microscopy for magnetic nanostructures, Advances in Natural Sciences: Nanoscience and Nanotechnology 7, 45001 (2016)
https://doi.org/10.1088/2043-6262/7/4/045001
110 A. Kovács and R. E. Dunin-Borkowski, Magnetic Imaging of Nanostructures Using Off-Axis Electron Holography, Elsevier, 2018, edited by E. Brück, pp 59–153
https://doi.org/10.1016/bs.hmm.2018.09.001
111 Y. Murakami, K. Niitsu, T. Tanigaki, R. Kainuma, H. S. Park, and D. Shindo, Magnetization amplified by structural disorder within nanometre-scale interface region, Nat. Commun. 5(1), 4133 (2014)
https://doi.org/10.1038/ncomms5133
112 J. Zweck, Imaging of magnetic and electric fields by electron microscopy, J. Phys.: Condens. Matter 28(40), 403001 (2016)
https://doi.org/10.1088/0953-8984/28/40/403001
113 C. Chen, H. Li, T. Seki, D. Yin, G. Sanchez-Santolino, K. Inoue, N. Shibata, and Y. Ikuhara, Direct determination of atomic structure and magnetic coupling of magnetite twin boundaries, ACS Nano 12(3), 2662 (2018)
https://doi.org/10.1021/acsnano.7b08802
114 Z. Q. Wang, X. Y. Zhong, R. Yu, Z. Y. Cheng, and J. Zhu, Quantitative experimental determination of site-specific magnetic structures by transmitted electrons, Nat. Commun. 4(1), 1395 (2013)
https://doi.org/10.1038/ncomms2323
115 P. Schattschneider, S. Rubino, C. Hébert, J. Rusz, J. Kuneš, P. Novák, E. Carlino, M. Fabrizioli, G. Panaccione, and G. Rossi, Detection of magnetic circular dichroism using a transmission electron microscope, Nature 441(7092), 486 (2006)
https://doi.org/10.1038/nature04778
116 Z. Wang, A. H. Tavabi, L. Jin, J. Rusz, D. Tyutyunnikov, H. Jiang, Y. Moritomo, J. Mayer, R. E. Dunin-Borkowski, R. Yu, J. Zhu, and X. Zhong, Atomic scale imaging of magnetic circular dichroism by achromatic electron microscopy, Nat. Mater. 17(3), 221 (2018)
https://doi.org/10.1038/s41563-017-0010-4
117 X. Z. Yu, Y. Onose, N. Kanazawa, J. H. Park, J. H. Han, Y. Matsui, N. Nagaosa, and Y. Tokura, Real-space observation of a two-dimensional skyrmion crystal, Nature 465(7300), 901 (2010)
https://doi.org/10.1038/nature09124
118 D. Lu, D. J. Baek, S. S. Hong, L. F. Kourkoutis, Y. Hikita, and H. Y. Hwang, Synthesis of freestanding single-crystal perovskite films and heterostructures by etching of sacrificial water-soluble layers, Nat. Mater. 15(12), 1255 (2016)
https://doi.org/10.1038/nmat4749
119 M. Li, C. Tang, T. R. Paudel, D. Song, W. Lü, K. Han, Z. Huang, S. Zeng, X. Renshaw Wang, P. Yang, J. Ariando, J. Chen, T. Venkatesan, E. Y. Tsymbal, C. Li, and S. J. Pennycook, Controlling the magnetic properties of LaMnO3/SrTiO3 heterostructures by stoichiometry and electronic reconstruction: Atomic-scale evidence, Adv. Mater. 31(27), 1901386 (2019)
https://doi.org/10.1002/adma.201901386
120 M. Varela, M. P. Oxley, W. Luo, J. Tao, M. Watanabe, A. R. Lupini, S. T. Pantelides, and S. J. Pennycook, Atomic-resolution imaging of oxidation states in manganites, Phys. Rev. B 79(8), 085117 (2009)
https://doi.org/10.1103/PhysRevB.79.085117
121 W. Luo, A. Franceschetti, M. Varela, J. Tao, S. J. Pennycook, and S. T. Pantelides, Orbital-occupancy versus charge ordering and the strength of electron correlations in electron-doped CaMnO3, Phys. Rev. Lett. 99(3), 036402 (2007)
https://doi.org/10.1103/PhysRevLett.99.036402
122 P. G. Radaelli, D. E. Cox, M. Marezio, and S. W. Cheong, Charge, orbital, and magnetic ordering in La0.5Ca0.5MnO3, Phys. Rev. B 55(5), 3015 (1997)
https://doi.org/10.1103/PhysRevB.55.3015
123 M. R. Ibarra, P. A. Algarabel, C. Marquina, J. Blasco, and J. García, Large magnetovolume effect in yttrium doped La-Ca-Mn-O perovskite, Phys. Rev. Lett. 75(19), 3541 (1995)
https://doi.org/10.1103/PhysRevLett.75.3541
124 C. Ritter, M. R. Ibarra, J. M. De Teresa, P. A. Algarabel, C. Marquina, J. Blasco, J. García, S. Oseroff, and S. W. Cheong, Influence of oxygen content on the structural, magnetotransport, and magnetic properties of LaMnO3+δ, Phys. Rev. B 56(14), 8902 (1997)
https://doi.org/10.1103/PhysRevB.56.8902
125 J. De Teresa, M. Ibarra, J. Blasco, J. García, C. Marquina, P. Algarabel, Z. Arnold, K. Kamenev, C. Ritter, and R. von Helmolt, Spontaneous behavior and magnetic field and pressure effects on La2/3Ca1/3MnO3 perovskite, Phys. Rev. B 54(2), 1187 (1996)
https://doi.org/10.1103/PhysRevB.54.1187
126 M. Saghayezhian, S. Kouser, Z. Wang, H. Guo, R. Jin, Jiandi Zhang, Y. Zhu, S. T. Pantelides, and E. W. Plummer, Atomic-scale determination of spontaneous magnetic reversal in oxide heterostructures, Proc. Natl. Acad. Sci. USA 116(21), 10309 (2019)
https://doi.org/10.1073/pnas.1819570116
127 E. J. Moon, Q. He, S. Ghosh, B. J. Kirby, S. T. Pantelides, A. Y. Borisevich, and S. J. May, Structural “ d doping” to control local magnetization in isovalent oxide heterostructures, Phys. Rev. Lett. 119(19), 197204 (2017)
https://doi.org/10.1103/PhysRevLett.119.197204
128 A. Vailionis, H. Boschker, W. Siemons, E. P. Houwman, D. H. A. Blank, G. Rijnders, and G. Koster, Misfit strain accommodation in epitaxial ABO3 perovskites: Lattice rotations and lattice modulations, Phys. Rev. B 83, 064101 (2011)
https://doi.org/10.1103/PhysRevB.83.064101
129 K. Zhao, J. E. Taylor, L. H. Haber, Jiandi Zhang, E. W. Plummer, and M. Saghayezhian, Probing the interfacial symmetry using rotational second-harmonic generation in oxide heterostructures, J. Phys. Chem. C 123(37), 23000 (2019)
https://doi.org/10.1021/acs.jpcc.9b05974
130 A. Rockett, The Materials Science of Semiconductors,Springer US, Boston, MA, 2008, pp 289–356
https://doi.org/10.1007/978-0-387-68650-9_7
131 H. Hilgenkamp and J. Mannhart, Grain boundaries in high-Tc superconductors, Rev. Mod. Phys. 74(2), 485 (2002)
https://doi.org/10.1103/RevModPhys.74.485
132 S. V. Kalinin and N. A. Spaldin, Functional ion defects in transition metal oxides, Science 341(6148), 858 (2013)
https://doi.org/10.1126/science.1243098
133 D. B. Holt and B. G. Yaobi, Extended Defects in Semiconductors: Electronic Properties, Device Effects and Structures, Cambridge University Press, New York, USA, 2014
134 J. D. Richard, Tilley, Defects in Solids, John Wiley & Sons, Inc., Hoboken, New Jersey, 2008
135 M. A. Zurbuchen, W. Tian, X. Q. Pan, D. Fong, S. K. Streiffer, M. E. Hawley, J. Lettieri, Y. Jia, G. Asayama, S. J. Fulk, D. J. Comstock, S. Knapp, A. H. Carim, and D. G. Schlom, Morphology, structure, and nucleation of outof- phase boundaries (OPBs) in epitaxial films of layered oxides, J. Mater. Res. 22(6), 1439 (2007)
https://doi.org/10.1557/JMR.2007.0198
136 S. Celotto, W. Eerenstein, and T. Hibma, Characterization of anti-phase boundaries in epitaxial magnetite films, Eur. Phys. J. B 36(2), 271 (2003)
https://doi.org/10.1140/epjb/e2003-00344-7
137 D. Gilks, L. Lari, Z. Cai, O. Cespedes, A. Gerber, S. Thompson, K. Ziemer, and V. K. Lazarov, Magnetism and magnetotransport in symmetry matched spinels: Fe3O4/MgAl2O4, J. Appl. Phys. 113(17), 17B107 (2013)
https://doi.org/10.1063/1.4800690
138 Z. Wang, H. Guo, S. Shao, M. Saghayezhian, J. Li, R. Fittipaldi, A. Vecchione, P. Siwakoti, Y. Zhu, Jiandi Zhang, and E. W. Plummer, Designing antiphase boundaries by atomic control of heterointerfaces, Proc. Natl. Acad. Sci. USA 115(38), 9485 (2018)
https://doi.org/10.1073/pnas.1808812115
139 J. S. Jeong, M. Topsakal, P. Xu, B. Jalan, R. M. Wentzcovitch, and K. A. Mkhoyan, A new line defect in NdTiO3 perovskite, Nano Lett. 16(11), 6816 (2016)
https://doi.org/10.1021/acs.nanolett.6b02532
140 N. B. Hannay (Ed.), Treatise on Solid State Chemistry, Volume 3, Crystalline and Noncrystalline Solids, Plenum Press, New York- London, 1976
141 W. Greiner, L. Neise, and H. Stöcker, Thermodynamics and Statistical Mechanics, Springer-Verlag, 1995
https://doi.org/10.1007/978-1-4612-0827-3
142 Y. M. Kim, J. He, M. D. Biegalski, H. Ambaye, V. Lauter, H. M. Christen, S. T. Pantelides, S. J. Pennycook, S. V. Kalinin, and A. Y. Borisevich, Probing oxygen vacancy concentration and homogeneity in solid-oxide fuel-cell cathode materials on the subunit-cell level, Nat. Mater. 11(10), 888 (2012)
https://doi.org/10.1038/nmat3393
143 Y. Zhu, J. M. Zuo, A. R. Moodenbaugh, and M. Suenaga, Grain-boundary constraint and oxygen deficiency in YBa2Cu3O7−δ: Application of the coincidence site lattice model to a non-cubic system, Philos. Mag. A 70(6), 969 (1994)
https://doi.org/10.1080/01418619408242943
144 D. A. Muller, N. Nakagawa, A. Ohtomo, J. L. Grazul, and H. Y. Hwang, Atomic-scale imaging of nanoengineered oxygen vacancy profiles in SrTiO3, Nature 430(7000), 657 (2004)
https://doi.org/10.1038/nature02756
145 O. L. Krivanek, T. C. Lovejoy, M. F. Murfitt, G. Skone, P. E. Batson, and N. Dellby, Towards sub-10 meV energy resolution STEM-EELS, J. Phys. Conf. Ser. 522, 012023 (2014)
https://doi.org/10.1088/1742-6596/522/1/012023
146 S. Wang, K. March, F. A. Ponce, and P. Rez, Identification of point defects using high-resolution electron energy loss spectroscopy, Phys. Rev. B 99(11), 115312 (2019)
https://doi.org/10.1103/PhysRevB.99.115312
147 D. S. Su, H. W. Zandbergen, P. C. Tiemeijer, G. Kothleitner, M. Hävecker, C. Hébert, A. Knop-Gericke, B. H. Freitag, F. Hofer, and R. Schlögl, High resolution EELS using monochromator and high performance spectrometer: Comparison of V2O5 ELNES with NEXAFS and band structure calculations, Micron 34(3–5), 235 (2003)
https://doi.org/10.1016/S0968-4328(03)00033-7
148 M. Bugnet, D. Rossouw, G. A. Botton, and T. Kolodiazhnyi, High-resolution near-edge structures in EuTiO3, SrTiO3 and BaTiO3, Microsc. Microanal. 18(S2), 1460 (2012)
https://doi.org/10.1017/S1431927612009154
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed