1. Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210033, China 2. School of Astronomy and Space Science, University of Science and Technology of China, Hefei 230026, China 3. Center for High Energy Physics, Peking University, Beijing 100871, China 4. State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei 230026, China 5. Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China 6. Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
Precise measurements of the energy spectra of cosmic rays (CRs) show various kinds of features deviating from single power-laws, which give very interesting and important implications on their origin and propagation. Previous measurements from a few balloon and space experiments indicate the existence of spectral softenings around 10 TV for protons (and probably also for Helium nuclei). Very recently, the DArk Matter Particle Explorer (DAMPE) measurement about the proton spectrum clearly reveals such a softening with a high significance. Here we study the implications of these new measurements, as well as the groundbased indirect measurements, on the origin of CRs. We find that a single component of CRs fails to fit the spectral softening and the air shower experiment data simultaneously. In the framework of multiple components, we discuss two possible scenarios, the multiple source population scenario and the background plus nearby source scenario. Both scenarios give reasonable fits to the wide-band data from TeV to 100 PeV energies. Considering the anisotropy observations, the nearby source model is favored.
M. Aguilar, et al., Precision measurement of the boron to carbon flux ratio in cosmic rays from 1.9 GV to 2.6 TV with the alpha magnetic spectrometer on the international space station, Phys. Rev. Lett. 117(23), 231102 (2016)
2
A. D. Panov, et al., Energy spectra of abundant nuclei of primary cosmic rays from the data of ATIC-2 experiment: Final results, Bull. Russ. Acad. Sci. Phys. 73(5), 564 (2009), arXiv: 1101.3246 https://doi.org/10.3103/S1062873809050098
3
H. S. Ahn, et al., Discrepant hardening observed in cosmic-ray elemental spectra, Astrophys. J. 714(1), L89 (2010), arXiv: 1004.1123 https://doi.org/10.1088/2041-8205/714/1/L89
4
O. Adriani, et al., PAMELA measurements of cosmic-ray proton and helium spectra, Science 332(6025), 69 (2011), 1103.4055
5
M. Aguilar, et al., Precision measurement of the proton flux in primary cosmic rays from rigidity 1 GV to 1.8 TV with the alpha magnetic spectrometer on the international space station, Phys. Rev. Lett. 114(17), 171103 (2015)
6
M. Aguilar, et al., Precision measurement of the helium flux in primary cosmic rays of rigidities 1.9 GV to 3 TV with the alpha magnetic spectrometer on the international space station, Phys. Rev. Lett. 115(21), 211101 (2015)
7
M. Aguilar, et al., Observation of the Identical Rigidity Dependence of He, C, and O cosmic rays at high rigidities by the alpha magnetic spectrometer on the international space station, Phys. Rev. Lett. 119(25), 251101 (2017)
8
O. Adriani, et al., Direct measurement of the cosmicray proton spectrum from 50 GeV to 10 TeV with the calorimetric electron telescope on the international space station, Phys. Rev. Lett. 122, 181102 (2019), arXiv: 1905.04229
Q. Yuan, B. Zhang, and X. J. Bi, Cosmic ray spectral hardening due to dispersion in the source injection spectra, Phys. Rev. D 84(4), 043002 (2011), arXiv: 1104.3357 https://doi.org/10.1103/PhysRevD.84.043002
11
A. E. Vladimirov, G. Jóhannesson, I. V. Moskalenko, and T. A. Porter, Testing the origin of high-energy cosmic rays, Astrophys. J. 752(1), 68 (2012), arXiv: 1108.1023 https://doi.org/10.1088/0004-637X/752/1/68
S. Thoudam and J. R. Hörandel, Nearby supernova remnants and the cosmic ray spectral hardening at high energies, Mon. Not. R. Astron. Soc. 421(2), 1209 (2012), arXiv: 1112.3020 https://doi.org/10.1111/j.1365-2966.2011.20385.x
14
G. Bernard, T. Delahaye, Y.-Y. Keum, W. Liu, P. Salati, and R. Taillet, TeV cosmic-ray proton and helium spectra in the myriad model, Astron. Astrophys. 555, A48 (2013), arXiv: 1207.4670 https://doi.org/10.1051/0004-6361/201321202
15
W. Liu, X.-J. Bi, S.-J. Lin, B.-B. Wang, and P.- F. Yin, Excesses of cosmic ray spectra from a single nearby source, Phys. Rev. D 96, 023006 (2017), arXiv: 1611.09118 https://doi.org/10.1103/PhysRevD.96.023006
16
V. Ptuskin, V. Zirakashvili, and E. S. Seo, Spectra of cosmic-ray protons and helium produced in supernova remnants, Astrophys. J. 763(1), 47 (2013), arXiv: 1212.0381 https://doi.org/10.1088/0004-637X/763/1/47
17
S. Thoudam and J. R. Hörandel, GeV-TeV cosmic-ray spectral anomaly as due to reacceleration by weak shocks in the galaxy, Astron. Astrophys. 567, A33 (2014), arXiv: 1404.3630 https://doi.org/10.1051/0004-6361/201322996
18
Y. Zhang, S. Liu, and Q. Yuan, Anomalous distributions of primary cosmic rays as evidence for time-dependent particle acceleration in Supernova remnants, Astrophys. J. Lett. 844, L3 (2017), arXiv: 1707.00262 https://doi.org/10.3847/2041-8213/aa7de1
P. Blasi, E. Amato, and P. D. Serpico, Spectral breaks as a signature of cosmic ray induced turbulence in the galaxy, Phys. Rev. Lett. 109(6), 061101 (2012), 1207.3706 https://doi.org/10.1103/PhysRevLett.109.061101
21
N. Tomassetti and F. Donato, The connection between the positron fraction anomaly and the spectral features in galactic cosmic-ray hadrons, Astrophys. J. Lett. 803, L15 (2015), arXiv: 1502.06150 https://doi.org/10.1088/2041-8205/803/2/L15
C. Jin, Y. Q. Guo, and H. B. Hu, Spatial dependent diffusion of cosmic rays and the excess of primary electrons derived from high precision measurements by AMS-02, Chin. Phys. C 40, 015101 (2016), arXiv: 1504.06903 https://doi.org/10.1088/1674-1137/40/1/015101
24
Y. Q. Guo, Z. Tian, and C. Jin, Spatial-dependent propagation of cosmic rays results in spectrum of proton, ratios of $p/p$, B/C and anisotropy of nuclei, Astrophys. J. 819(1), 54 (2016) https://doi.org/10.3847/0004-637X/819/1/54
25
Y. Q. Guo and Q. Yuan, Understanding the spectral hardenings and radial distribution of galactic cosmic rays and Fermi diffuse gamma-rays with spatially-dependent propagation, Phys. Rev. D 97, 063008 (2018), arXiv: 1801.05904 https://doi.org/10.1103/PhysRevD.97.063008
26
W. Liu, Y. H. Yao, and Y. Q. Guo, Revisiting spatialdependent propagation model with latest observations of cosmic ray nuclei, Astrophys. J. 869, 176 (2018), arXiv: 1802.03602 https://doi.org/10.3847/1538-4357/aaef39
27
M. Aguilar, et al., Observation of new properties of secondary cosmic rays lithium, beryllium, and boron by the alpha magnetic spectrometer on the international space station, Phys. Rev. Lett. 120(2), 021101 (2018)
28
Y. Génolini, et al., Indications for a high-rigidity break in the cosmic-ray diffusion coefficient, Phys. Rev. Lett. 119, 241101 (2017), arXiv: 1706.09812 https://doi.org/10.1103/PhysRevLett.119.241101
29
Q. Yuan, C. R. Zhu, X. J. Bi, and D. M. Wei, Secondary cosmic ray nucleus spectra strongly favor reacceleration of particle transport in the Milky Way, arXiv: 1810.03141 (2018)
30
J. S. Niu, T. Li, and H. F. Xue, Bayesian analysis of the hardening in AMS-02 nuclei spectra, arXiv: 1810.09301 (2018)
31
Y. S. Yoon, et al., Proton and Helium Spectra from the CREAM-III Flight, Astrophys. J. 839, 5 (2017), arXiv: 1704.02512 https://doi.org/10.3847/1538-4357/aa68e4
32
E. Atkin, et al., A new universal cosmic-ray knee near the magnetic rigidity 10 TV with the NUCLEON space observatory, Soviet J. Exp. Theor. Phys. Lett. 108, 5 (2018), arXiv: 1805.07119 https://doi.org/10.1134/S0021364018130015
33
J. Chang, Dark matter particle explorer: The first chinese cosmic ray and hard γ-ray detector in space, Chin. J. Space Sci. (Kongjian Kexue Xuebao)34, 550 (2014)
34
J. Chang, et al., The Dark matter particle explorer mission, Astropart. Phys. 95, 6 (2017), arXiv: 1706.08453
35
Q. An, et al., Measurement of the cosmic-ray proton spectrum from 40 GeV to 100 TeV with the DAMPE satellite, Sci. Adv. 5, eaax3793 (2019), arXiv: 1909.12860
36
T. Antoni, et al. (KASCADE Collaboration), KASCADE measurements of energy spectra for elemental groups of cosmic rays: Results and open problems, Astropart. Phys. 24, 1 (2005), arXiv: astro-ph/0505413
37
E. E. Korosteleva, V. V. Prosin, L. A. Kuzmichev, and G. Navarra, Measurement of cosmic ray primary energy with the atmospheric Cherenkov light technique in extensive air showers, Nucl. Phys. B Proc. Suppl. 165, 74 (2007) https://doi.org/10.1016/j.nuclphysbps.2006.11.012
38
M. Amenomori, et al., The all-particle spectrum of primary cosmic rays in the wide energy range from 1014 to 1017 eV observed with the Tibet-III air-shower array, Astrophys. J. 678(2), 1165 (2008), 0801.1803
39
A. P. Garyaka, R. M. Martirosov, S. V. Ter-Antonyan, A. D. Erlykin, N. M. Nikolskaya, Y. A. Gallant, L. W. Jones, and J. Procureur, An all-particle primary energy spectrum in the 3–200 PeV energy range, J. Phys. G Nucl. Phys. 35(11), 115201 (2008), 0808.1421 https://doi.org/10.1088/0954-3899/35/11/115201
40
M. Amenomori, et al. (Tibet As-gamma Collaboration), Are protons still dominant at the knee of the cosmic-ray energy spectrum? Phys. Lett. B 632, 58 (2006), arXiv: astro-ph/0511469
41
B. Bartoli, et al., The knee of the cosmic hydrogen and helium spectrum below 1 PeV measured by ARGO-YBJ and a Cherenkov telescope of LHAASO, Phys. Rev. D 92, 092005 (2015), arXiv: 1502.03164
42
J. C. Arteaga-Velazquez and J. D. Alvarez, The spectrum of the light component of TeV cosmic rays measured with HAWC, Proceedings of Science ICRC 2019, 176 (2019)
43
W. D. Apel, et al., KASCADE-Grande measurements of energy spectra for elemental groups of cosmic rays, Astropart. Phys. 47, 54 (2013)
44
B. Bartoli, et al. (ARGO-YBJ Collaboration), The cosmic ray proton plus helium energy spectrum measured by the ARGO-YBJ experiment in the energy range 3-300 TeV, Phys. Rev. D 91, 112017 (2015), arXiv: 1503.07136
V. I. Zatsepin and N. V. Sokolskaya, Three component model of cosmic ray spectra from 10 GeV to 100 PeV, Astron. Astrophys. 458(1), 1 (2006), arXiv: astroph/ 0601475 https://doi.org/10.1051/0004-6361:20065108
47
A. M. Hillas, Cosmic rays: Recent progress and some current questions, arXiv: astro-ph/0607109 (2006)
48
T. K. Gaisser, Spectrum of cosmic-ray nucleons, kaon production, and the atmospheric muon charge ratio, Astropart. Phys. 35(12), 801 (2012), arXiv: 1111.6675 https://doi.org/10.1016/j.astropartphys.2012.02.010
49
T. K. Gaisser, T. Stanev, and S. Tilav, Cosmic ray energy spectrum from measurements of air showers, Front. Phys. 8(6), 748 (2013), arXiv: 1303.3565 https://doi.org/10.1007/s11467-013-0319-7
50
S. Thoudam, J. P. Rachen, A. van Vliet, A. Achterberg, S. Buitink, H. Falcke, and J. R. Hörandel, Cosmic-ray energy spectrum and composition up to the ankle- the case for a second Galactic component, Astron. Astrophys. 595, A33 (2016), arXiv: 1605.03111 https://doi.org/10.1051/0004-6361/201628894
51
Y. Q. Guo, and Q. Yuan, On the knee of galactic cosmic rays in light of sub-TeV spectral hardenings, Chin. Phys. C 42, 075103 (2018), arXiv: 1701.07136 https://doi.org/10.1088/1674-1137/42/7/075103
52
A. D. Erlykin and A. W. Wolfendale, A single source of cosmic rays in the range- eV, J. Phys. G Nucl. Phys. 23(8), 979 (1997) https://doi.org/10.1088/0954-3899/23/8/012
53
L. G. Sveshnikova, O. N. Strelnikova, and V. S. Ptuskin, Spectrum and anisotropy of cosmic rays at TeV–PeVenergies and contribution of nearby sources, Astropart. Phys. 50, 33 (2013), 1301.2028 https://doi.org/10.1016/j.astropartphys.2013.08.007
54
V. Savchenko, M. Kachelrieβ, and D. V. Semikoz, Imprint of a 2 Myr old source on the cosmic ray anisotropy, Astrophys. J. Lett. 809, L23 (2015), arXiv: 1505.02720 https://doi.org/10.1088/2041-8205/809/2/L23
55
W. Liu, Y.-Q. Guo, and Q. Yuan, Indication of nearby source signatures of cosmic rays from energy spectra and anisotropies, J. Cosmol. Astropart. Phys. 10, 010 (2019), arXiv: 1812.09673 https://doi.org/10.1088/1475-7516/2019/10/010
56
X. B. Qu, Understanding the galactic cosmic ray dipole anisotropy with a nearby single source under the spatially-dependent propagation scenario, arXiv: 1901.00249 (2019)
57
B. Q. Qiao, W. Liu, Y. Q. Guo, and Q. Yuan, Anisotropies of different mass compositions of cosmic rays, J. Cosmol. Astropart. Phys. 12, 007 (2019), arXiv: 1905.12505 https://doi.org/10.1088/1475-7516/2019/12/007
58
D. Karmanov, I. Kovalev, I. Kudryashov, A. Kurganov, V. Latonov, A. Panov, D. Podorozhnyy, and A. Turundaevskiy, A possibility of interpretation of the cosmic ray kneenear 10 TV as a contribution of a single close source, arXiv: 1907.05987 (2019)
59
Y. S. Yoon, et al., Cosmic-ray proton and helium spectra from the first cream flight, Astrophys. J. 728(2), 122 (2011), arXiv: 1102.2575 https://doi.org/10.1088/0004-637X/728/2/122
60
P. Lipari and S. Vernetto, The shape of the cosmic ray proton spectrum, arXiv: 1911.01311 (2019)
61
H. S. Ahn, et al., Energy spectra of cosmic-ray nuclei at high energies, Astrophys. J. 707(1), 593 (2009), arXiv: 0911.1889
62
M. Aglietta, et al., A measurement of the solar and sidereal cosmic-ray anisotropy at E0 approximately 1014 eV, Astrophys. J. 470, 501 (1996) https://doi.org/10.1086/177881
63
M. Amenomori, et al., Anisotropy and corotation of galactic cosmic rays, Science 314(5798), 439 (2006), arXiv: astro-ph/0610671
M. G. Aartsen, et al. (IceCube Collaboration), Anisotropy in cosmic-ray arrival directions in the southern hemisphere with six years of data from the Ice- Cube Detector, Astrophys. J. 826, 220 (2016), arXiv: 1603.01227
66
M. Amenomori, et al. (Tibet AS-gamma Collaboration), Northern sky galactic cosmic ray anisotropy between 10- 1000 TeV with the Tibet air shower array, Astrophys. J. 836, 153 (2017), arXiv: 1701.07144
67
X. Bai, et al., The large high altitude air shower observatory (LHAASO) science white paper, arXiv: 1905.02773 (2019)
68
S. N. Zhang, et al. (HERD Collaboration), The high energy cosmic-radiation detection (HERD) facility onboard China’s future space station, in: Proc. SPIE 9144, 91440X (2014), arXiv: 1407.4866