Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2020, Vol. 15 Issue (2): 24601   https://doi.org/10.1007/s11467-019-0946-8
  本期目录
Implications on the origin of cosmic rays in light of 10 TV spectral softenings
Chuan Yue1, Peng-Xiong Ma1,2, Qiang Yuan1,2,3(), Yi-Zhong Fan1,2(), Zhan-Fang Chen1,2, Ming-Yang Cui1, Hao-Ting Dai4, Tie-Kuang Dong1, Xiaoyuan Huang1, Wei Jiang1,2, Shi-Jun Lei1, Xiang Li1, Cheng-Ming Liu4, Hao Liu1, Yang Liu1, Chuan-Ning Luo1,2, Xu Pan1,2, Wen-Xi Peng5, Rui Qiao5, Yi-Feng Wei4, Li-Bo Wu4, Zhi-Hui Xu1,2, Zun-Lei Xu1, Guan-Wen Yuan1,2, Jing-Jing Zang1, Ya-Peng Zhang6, Yong-Jie Zhang6, Yun-Long Zhang4
1. Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210033, China
2. School of Astronomy and Space Science, University of Science and Technology of China, Hefei 230026, China
3. Center for High Energy Physics, Peking University, Beijing 100871, China
4. State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei 230026, China
5. Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
6. Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
 全文: PDF(1825 KB)  
Abstract

Precise measurements of the energy spectra of cosmic rays (CRs) show various kinds of features deviating from single power-laws, which give very interesting and important implications on their origin and propagation. Previous measurements from a few balloon and space experiments indicate the existence of spectral softenings around 10 TV for protons (and probably also for Helium nuclei). Very recently, the DArk Matter Particle Explorer (DAMPE) measurement about the proton spectrum clearly reveals such a softening with a high significance. Here we study the implications of these new measurements, as well as the groundbased indirect measurements, on the origin of CRs. We find that a single component of CRs fails to fit the spectral softening and the air shower experiment data simultaneously. In the framework of multiple components, we discuss two possible scenarios, the multiple source population scenario and the background plus nearby source scenario. Both scenarios give reasonable fits to the wide-band data from TeV to 100 PeV energies. Considering the anisotropy observations, the nearby source model is favored.

Key wordscosmic rays
收稿日期: 2019-10-03      出版日期: 2019-12-23
Corresponding Author(s): Qiang Yuan,Yi-Zhong Fan   
 引用本文:   
. [J]. Frontiers of Physics, 2020, 15(2): 24601.
Chuan Yue, Peng-Xiong Ma, Qiang Yuan, Yi-Zhong Fan, Zhan-Fang Chen, Ming-Yang Cui, Hao-Ting Dai, Tie-Kuang Dong, Xiaoyuan Huang, Wei Jiang, Shi-Jun Lei, Xiang Li, Cheng-Ming Liu, Hao Liu, Yang Liu, Chuan-Ning Luo, Xu Pan, Wen-Xi Peng, Rui Qiao, Yi-Feng Wei, Li-Bo Wu, Zhi-Hui Xu, Zun-Lei Xu, Guan-Wen Yuan, Jing-Jing Zang, Ya-Peng Zhang, Yong-Jie Zhang, Yun-Long Zhang. Implications on the origin of cosmic rays in light of 10 TV spectral softenings. Front. Phys. , 2020, 15(2): 24601.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-019-0946-8
https://academic.hep.com.cn/fop/CN/Y2020/V15/I2/24601
1 M. Aguilar, et al., Precision measurement of the boron to carbon flux ratio in cosmic rays from 1.9 GV to 2.6 TV with the alpha magnetic spectrometer on the international space station, Phys. Rev. Lett. 117(23), 231102 (2016)
2 A. D. Panov, et al., Energy spectra of abundant nuclei of primary cosmic rays from the data of ATIC-2 experiment: Final results, Bull. Russ. Acad. Sci. Phys. 73(5), 564 (2009), arXiv: 1101.3246
https://doi.org/10.3103/S1062873809050098
3 H. S. Ahn, et al., Discrepant hardening observed in cosmic-ray elemental spectra, Astrophys. J. 714(1), L89 (2010), arXiv: 1004.1123
https://doi.org/10.1088/2041-8205/714/1/L89
4 O. Adriani, et al., PAMELA measurements of cosmic-ray proton and helium spectra, Science 332(6025), 69 (2011), 1103.4055
5 M. Aguilar, et al., Precision measurement of the proton flux in primary cosmic rays from rigidity 1 GV to 1.8 TV with the alpha magnetic spectrometer on the international space station, Phys. Rev. Lett. 114(17), 171103 (2015)
6 M. Aguilar, et al., Precision measurement of the helium flux in primary cosmic rays of rigidities 1.9 GV to 3 TV with the alpha magnetic spectrometer on the international space station, Phys. Rev. Lett. 115(21), 211101 (2015)
7 M. Aguilar, et al., Observation of the Identical Rigidity Dependence of He, C, and O cosmic rays at high rigidities by the alpha magnetic spectrometer on the international space station, Phys. Rev. Lett. 119(25), 251101 (2017)
8 O. Adriani, et al., Direct measurement of the cosmicray proton spectrum from 50 GeV to 10 TeV with the calorimetric electron telescope on the international space station, Phys. Rev. Lett. 122, 181102 (2019), arXiv: 1905.04229
9 Y. Ohira and K. Ioka, Cosmic-ray helium hardening, Astrophys. J. 729(1), L13 (2011), arXiv: 1011.4405
https://doi.org/10.1088/2041-8205/729/1/L13
10 Q. Yuan, B. Zhang, and X. J. Bi, Cosmic ray spectral hardening due to dispersion in the source injection spectra, Phys. Rev. D 84(4), 043002 (2011), arXiv: 1104.3357
https://doi.org/10.1103/PhysRevD.84.043002
11 A. E. Vladimirov, G. Jóhannesson, I. V. Moskalenko, and T. A. Porter, Testing the origin of high-energy cosmic rays, Astrophys. J. 752(1), 68 (2012), arXiv: 1108.1023
https://doi.org/10.1088/0004-637X/752/1/68
12 A. D. Erlykin and A. W. Wolfendale, A new component of cosmic rays? Astropart. Phys. 35(7), 449 (2012)
https://doi.org/10.1016/j.astropartphys.2011.11.012
13 S. Thoudam and J. R. Hörandel, Nearby supernova remnants and the cosmic ray spectral hardening at high energies, Mon. Not. R. Astron. Soc. 421(2), 1209 (2012), arXiv: 1112.3020
https://doi.org/10.1111/j.1365-2966.2011.20385.x
14 G. Bernard, T. Delahaye, Y.-Y. Keum, W. Liu, P. Salati, and R. Taillet, TeV cosmic-ray proton and helium spectra in the myriad model, Astron. Astrophys. 555, A48 (2013), arXiv: 1207.4670
https://doi.org/10.1051/0004-6361/201321202
15 W. Liu, X.-J. Bi, S.-J. Lin, B.-B. Wang, and P.- F. Yin, Excesses of cosmic ray spectra from a single nearby source, Phys. Rev. D 96, 023006 (2017), arXiv: 1611.09118
https://doi.org/10.1103/PhysRevD.96.023006
16 V. Ptuskin, V. Zirakashvili, and E. S. Seo, Spectra of cosmic-ray protons and helium produced in supernova remnants, Astrophys. J. 763(1), 47 (2013), arXiv: 1212.0381
https://doi.org/10.1088/0004-637X/763/1/47
17 S. Thoudam and J. R. Hörandel, GeV-TeV cosmic-ray spectral anomaly as due to reacceleration by weak shocks in the galaxy, Astron. Astrophys. 567, A33 (2014), arXiv: 1404.3630
https://doi.org/10.1051/0004-6361/201322996
18 Y. Zhang, S. Liu, and Q. Yuan, Anomalous distributions of primary cosmic rays as evidence for time-dependent particle acceleration in Supernova remnants, Astrophys. J. Lett. 844, L3 (2017), arXiv: 1707.00262
https://doi.org/10.3847/2041-8213/aa7de1
19 N. Tomassetti, Origin of the cosmic-ray spectral hardening, Astrophys. J. 752(1), L13 (2012), 1204.4492
https://doi.org/10.1088/2041-8205/752/1/L13
20 P. Blasi, E. Amato, and P. D. Serpico, Spectral breaks as a signature of cosmic ray induced turbulence in the galaxy, Phys. Rev. Lett. 109(6), 061101 (2012), 1207.3706
https://doi.org/10.1103/PhysRevLett.109.061101
21 N. Tomassetti and F. Donato, The connection between the positron fraction anomaly and the spectral features in galactic cosmic-ray hadrons, Astrophys. J. Lett. 803, L15 (2015), arXiv: 1502.06150
https://doi.org/10.1088/2041-8205/803/2/L15
22 A. M. Taylor and G. Giacinti, Cosmic rays in a galactic breeze, Phys. Rev. D 95, 023001 (2017), arXiv: 1607.08862
https://doi.org/10.1103/PhysRevD.95.023001
23 C. Jin, Y. Q. Guo, and H. B. Hu, Spatial dependent diffusion of cosmic rays and the excess of primary electrons derived from high precision measurements by AMS-02, Chin. Phys. C 40, 015101 (2016), arXiv: 1504.06903
https://doi.org/10.1088/1674-1137/40/1/015101
24 Y. Q. Guo, Z. Tian, and C. Jin, Spatial-dependent propagation of cosmic rays results in spectrum of proton, ratios of $p/p$, B/C and anisotropy of nuclei, Astrophys. J. 819(1), 54 (2016)
https://doi.org/10.3847/0004-637X/819/1/54
25 Y. Q. Guo and Q. Yuan, Understanding the spectral hardenings and radial distribution of galactic cosmic rays and Fermi diffuse gamma-rays with spatially-dependent propagation, Phys. Rev. D 97, 063008 (2018), arXiv: 1801.05904
https://doi.org/10.1103/PhysRevD.97.063008
26 W. Liu, Y. H. Yao, and Y. Q. Guo, Revisiting spatialdependent propagation model with latest observations of cosmic ray nuclei, Astrophys. J. 869, 176 (2018), arXiv: 1802.03602
https://doi.org/10.3847/1538-4357/aaef39
27 M. Aguilar, et al., Observation of new properties of secondary cosmic rays lithium, beryllium, and boron by the alpha magnetic spectrometer on the international space station, Phys. Rev. Lett. 120(2), 021101 (2018)
28 Y. Génolini, et al., Indications for a high-rigidity break in the cosmic-ray diffusion coefficient, Phys. Rev. Lett. 119, 241101 (2017), arXiv: 1706.09812
https://doi.org/10.1103/PhysRevLett.119.241101
29 Q. Yuan, C. R. Zhu, X. J. Bi, and D. M. Wei, Secondary cosmic ray nucleus spectra strongly favor reacceleration of particle transport in the Milky Way, arXiv: 1810.03141 (2018)
30 J. S. Niu, T. Li, and H. F. Xue, Bayesian analysis of the hardening in AMS-02 nuclei spectra, arXiv: 1810.09301 (2018)
31 Y. S. Yoon, et al., Proton and Helium Spectra from the CREAM-III Flight, Astrophys. J. 839, 5 (2017), arXiv: 1704.02512
https://doi.org/10.3847/1538-4357/aa68e4
32 E. Atkin, et al., A new universal cosmic-ray knee near the magnetic rigidity 10 TV with the NUCLEON space observatory, Soviet J. Exp. Theor. Phys. Lett. 108, 5 (2018), arXiv: 1805.07119
https://doi.org/10.1134/S0021364018130015
33 J. Chang, Dark matter particle explorer: The first chinese cosmic ray and hard γ-ray detector in space, Chin. J. Space Sci. (Kongjian Kexue Xuebao)34, 550 (2014)
34 J. Chang, et al., The Dark matter particle explorer mission, Astropart. Phys. 95, 6 (2017), arXiv: 1706.08453
35 Q. An, et al., Measurement of the cosmic-ray proton spectrum from 40 GeV to 100 TeV with the DAMPE satellite, Sci. Adv. 5, eaax3793 (2019), arXiv: 1909.12860
36 T. Antoni, et al. (KASCADE Collaboration), KASCADE measurements of energy spectra for elemental groups of cosmic rays: Results and open problems, Astropart. Phys. 24, 1 (2005), arXiv: astro-ph/0505413
37 E. E. Korosteleva, V. V. Prosin, L. A. Kuzmichev, and G. Navarra, Measurement of cosmic ray primary energy with the atmospheric Cherenkov light technique in extensive air showers, Nucl. Phys. B Proc. Suppl. 165, 74 (2007)
https://doi.org/10.1016/j.nuclphysbps.2006.11.012
38 M. Amenomori, et al., The all-particle spectrum of primary cosmic rays in the wide energy range from 1014 to 1017 eV observed with the Tibet-III air-shower array, Astrophys. J. 678(2), 1165 (2008), 0801.1803
39 A. P. Garyaka, R. M. Martirosov, S. V. Ter-Antonyan, A. D. Erlykin, N. M. Nikolskaya, Y. A. Gallant, L. W. Jones, and J. Procureur, An all-particle primary energy spectrum in the 3–200 PeV energy range, J. Phys. G Nucl. Phys. 35(11), 115201 (2008), 0808.1421
https://doi.org/10.1088/0954-3899/35/11/115201
40 M. Amenomori, et al. (Tibet As-gamma Collaboration), Are protons still dominant at the knee of the cosmic-ray energy spectrum? Phys. Lett. B 632, 58 (2006), arXiv: astro-ph/0511469
41 B. Bartoli, et al., The knee of the cosmic hydrogen and helium spectrum below 1 PeV measured by ARGO-YBJ and a Cherenkov telescope of LHAASO, Phys. Rev. D 92, 092005 (2015), arXiv: 1502.03164
42 J. C. Arteaga-Velazquez and J. D. Alvarez, The spectrum of the light component of TeV cosmic rays measured with HAWC, Proceedings of Science ICRC 2019, 176 (2019)
43 W. D. Apel, et al., KASCADE-Grande measurements of energy spectra for elemental groups of cosmic rays, Astropart. Phys. 47, 54 (2013)
44 B. Bartoli, et al. (ARGO-YBJ Collaboration), The cosmic ray proton plus helium energy spectrum measured by the ARGO-YBJ experiment in the energy range 3-300 TeV, Phys. Rev. D 91, 112017 (2015), arXiv: 1503.07136
45 J. R. Hörandel, On the knee in the energy spectrum of cosmic rays, Astropart. Phys. 19, 193 (2003), arXiv: astro-ph/0210453
https://doi.org/10.1016/S0927-6505(02)00198-6
46 V. I. Zatsepin and N. V. Sokolskaya, Three component model of cosmic ray spectra from 10 GeV to 100 PeV, Astron. Astrophys. 458(1), 1 (2006), arXiv: astroph/ 0601475
https://doi.org/10.1051/0004-6361:20065108
47 A. M. Hillas, Cosmic rays: Recent progress and some current questions, arXiv: astro-ph/0607109 (2006)
48 T. K. Gaisser, Spectrum of cosmic-ray nucleons, kaon production, and the atmospheric muon charge ratio, Astropart. Phys. 35(12), 801 (2012), arXiv: 1111.6675
https://doi.org/10.1016/j.astropartphys.2012.02.010
49 T. K. Gaisser, T. Stanev, and S. Tilav, Cosmic ray energy spectrum from measurements of air showers, Front. Phys. 8(6), 748 (2013), arXiv: 1303.3565
https://doi.org/10.1007/s11467-013-0319-7
50 S. Thoudam, J. P. Rachen, A. van Vliet, A. Achterberg, S. Buitink, H. Falcke, and J. R. Hörandel, Cosmic-ray energy spectrum and composition up to the ankle- the case for a second Galactic component, Astron. Astrophys. 595, A33 (2016), arXiv: 1605.03111
https://doi.org/10.1051/0004-6361/201628894
51 Y. Q. Guo, and Q. Yuan, On the knee of galactic cosmic rays in light of sub-TeV spectral hardenings, Chin. Phys. C 42, 075103 (2018), arXiv: 1701.07136
https://doi.org/10.1088/1674-1137/42/7/075103
52 A. D. Erlykin and A. W. Wolfendale, A single source of cosmic rays in the range- eV, J. Phys. G Nucl. Phys. 23(8), 979 (1997)
https://doi.org/10.1088/0954-3899/23/8/012
53 L. G. Sveshnikova, O. N. Strelnikova, and V. S. Ptuskin, Spectrum and anisotropy of cosmic rays at TeV–PeVenergies and contribution of nearby sources, Astropart. Phys. 50, 33 (2013), 1301.2028
https://doi.org/10.1016/j.astropartphys.2013.08.007
54 V. Savchenko, M. Kachelrieβ, and D. V. Semikoz, Imprint of a 2 Myr old source on the cosmic ray anisotropy, Astrophys. J. Lett. 809, L23 (2015), arXiv: 1505.02720
https://doi.org/10.1088/2041-8205/809/2/L23
55 W. Liu, Y.-Q. Guo, and Q. Yuan, Indication of nearby source signatures of cosmic rays from energy spectra and anisotropies, J. Cosmol. Astropart. Phys. 10, 010 (2019), arXiv: 1812.09673
https://doi.org/10.1088/1475-7516/2019/10/010
56 X. B. Qu, Understanding the galactic cosmic ray dipole anisotropy with a nearby single source under the spatially-dependent propagation scenario, arXiv: 1901.00249 (2019)
57 B. Q. Qiao, W. Liu, Y. Q. Guo, and Q. Yuan, Anisotropies of different mass compositions of cosmic rays, J. Cosmol. Astropart. Phys. 12, 007 (2019), arXiv: 1905.12505
https://doi.org/10.1088/1475-7516/2019/12/007
58 D. Karmanov, I. Kovalev, I. Kudryashov, A. Kurganov, V. Latonov, A. Panov, D. Podorozhnyy, and A. Turundaevskiy, A possibility of interpretation of the cosmic ray kneenear 10 TV as a contribution of a single close source, arXiv: 1907.05987 (2019)
59 Y. S. Yoon, et al., Cosmic-ray proton and helium spectra from the first cream flight, Astrophys. J. 728(2), 122 (2011), arXiv: 1102.2575
https://doi.org/10.1088/0004-637X/728/2/122
60 P. Lipari and S. Vernetto, The shape of the cosmic ray proton spectrum, arXiv: 1911.01311 (2019)
61 H. S. Ahn, et al., Energy spectra of cosmic-ray nuclei at high energies, Astrophys. J. 707(1), 593 (2009), arXiv: 0911.1889
62 M. Aglietta, et al., A measurement of the solar and sidereal cosmic-ray anisotropy at E0 approximately 1014 eV, Astrophys. J. 470, 501 (1996)
https://doi.org/10.1086/177881
63 M. Amenomori, et al., Anisotropy and corotation of galactic cosmic rays, Science 314(5798), 439 (2006), arXiv: astro-ph/0610671
64 M. Aglietta, et al., Evolution of the cosmic-ray anisotropy above 1014 eV, Astrophys. J. 692(2), L130 (2009), arXiv: 0901.2740
https://doi.org/10.1088/0004-637X/692/2/L130
65 M. G. Aartsen, et al. (IceCube Collaboration), Anisotropy in cosmic-ray arrival directions in the southern hemisphere with six years of data from the Ice- Cube Detector, Astrophys. J. 826, 220 (2016), arXiv: 1603.01227
66 M. Amenomori, et al. (Tibet AS-gamma Collaboration), Northern sky galactic cosmic ray anisotropy between 10- 1000 TeV with the Tibet air shower array, Astrophys. J. 836, 153 (2017), arXiv: 1701.07144
67 X. Bai, et al., The large high altitude air shower observatory (LHAASO) science white paper, arXiv: 1905.02773 (2019)
68 S. N. Zhang, et al. (HERD Collaboration), The high energy cosmic-radiation detection (HERD) facility onboard China’s future space station, in: Proc. SPIE 9144, 91440X (2014), arXiv: 1407.4866
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed