Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2020, Vol. 15 Issue (3): 33601   https://doi.org/10.1007/s11467-020-0953-9
  本期目录
Mechanically scanned leaky-wave antenna based on a topological one-way waveguide
Qian Shen1,2,3, Yun You2, Jie Xu2, Yun Shen2, Xiaohua Deng2, Zhuoyuan Wang4, Weidong Min5(), Linfang Shen6, Sanshui Xiao3()
1. Information Engineering School, Nanchang University, Nanchang 330031, China
2. Institute of Space Science and Technology, Nanchang University, Nanchang 330031, China
3. Department of Photonics Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
4. Electronic and Information Engineering College, Ningbo University of Technology, Ningbo 315016, China
5. School of Software, Nanchang University, Nanchang 330031, China
6. Department of Applied Physics, Zhejiang University of Technology, Hangzhou 310023, China
 全文: PDF(3661 KB)  
Abstract

We propose a uniform backfire-to-endfire leaky-wave antenna (LWA) based on a topological one-way waveguide under external bias magnetic field. We systematically analyze the dispersion, showing that the proposed structure supports leaky mode arisen from total internal reflection. By means of tuning frequency or magnetic field, we obtain fixed-bias frequency and fixed-frequency bias LWA with continuous beam scanning from backward, broadside to forward direction. More importantly, we, for the first time, demonstrate that this proposed LWA shows mechanical tunability, allowing us to manipulate the radiation direction from backward, broadside to forward direction by mechanically tuning the air layer thickness. The simulated results show that our system exhibits super low 3dB beam width, high radiation efficiency as well as high antenna gain. Being provided such multiple controlled (especially mechanically) beam scanning manners, the present LWA paves an advanced approach for continuous beam scanning, holding a great potential for applications in modern communication and radar system.

Key wordsleaky-wave antenna    one-way waveguide    magneto-optic materials
收稿日期: 2019-11-28      出版日期: 2020-03-17
Corresponding Author(s): Weidong Min,Sanshui Xiao   
 引用本文:   
. [J]. Frontiers of Physics, 2020, 15(3): 33601.
Qian Shen, Yun You, Jie Xu, Yun Shen, Xiaohua Deng, Zhuoyuan Wang, Weidong Min, Linfang Shen, Sanshui Xiao. Mechanically scanned leaky-wave antenna based on a topological one-way waveguide. Front. Phys. , 2020, 15(3): 33601.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-020-0953-9
https://academic.hep.com.cn/fop/CN/Y2020/V15/I3/33601
1 W. W. Hansen, U.S. Patent 2 402 622 (1940)
2 D. Comite, S. K. Podilchak, P. Baccarelli, P. Burghignoli, A. Galli, A. P. Freundorfer, and Y. M. M. Antar, Analysis and design of a compact leaky-wave antenna for wideband broadside radiation, Sci. Rep. 8(1), 17741 (2018)
https://doi.org/10.1038/s41598-018-35480-7
3 J. L. Gomez-Tornero, Analysis and design of conformal tapered leaky-wave antennas, IEEE Antennas Wirel. Propag. Lett. 10, 1068 (2011)
https://doi.org/10.1109/LAWP.2011.2170051
4 L. Wang, J. L. Gomez-Tornero, E. Rajo-Iglesias, and O. Quevedo-Teruel, Low-dispersive leaky-wave antenna integrated in Groove gap waveguide technology, IEEE Trans. Antenn. Propag. 66(11), 99 (2018)
https://doi.org/10.1109/TAP.2018.2863115
5 J. Xu, W. Hong, H. Tang, Z. Kuai, and K. Wu, Half-mode substrate integrated waveguide (HMSIW) leaky-wave antenna for millimeter-wave applications, IEEE Antennas Wirel. Propag. Lett. 7, 85 (2008)
https://doi.org/10.1109/LAWP.2008.919353
6 D. R. Jackson, C. Caloz, and T. Itoh, Leaky-wave antennas, IEEE Proc. 100(7), 2194 (2012)
https://doi.org/10.1109/JPROC.2012.2187410
7 Q. Song, S. Campione, O. Boyraz, and F. Capolino, Silicon-based optical leaky wave antenna with narrow beam radiation, Opt. Express 19(9), 8735 (2011)
https://doi.org/10.1364/OE.19.008735
8 J. L. Gomez-Tornero, D. Blanco, E. Rajo-Iglesias, and N. Llombart, Holographic surface leaky-wave lenses with circularly-polarized focused near-fields (I): Concept, design and analysis theory, IEEE Trans. Antenn. Propag. 61(7), 3475 (2013)
https://doi.org/10.1109/TAP.2013.2257644
9 A. Lai, C. Caloz and T. Itoh, Composite right/lefthanded transmission line metamaterials, IEEE Microw. Mag. 5(3), 34 (2004)
https://doi.org/10.1109/MMW.2004.1337766
10 J. Y. Yin, J. Ren, Q. Zhang, H. C. Zhang, Y. Q. Liu, Y. B. Li, X. Wan, and T. Jun Cui, Frequency-controlled broad-angle beam scanning of patch array fed by Spoof surface plasmon polaritons, IEEE Trans. Antenn. Propag. 64(12), 5181 (2016)
https://doi.org/10.1109/TAP.2016.2623663
11 L. Liu, C. Caloz, and T. Itoh, Dominant mode leakywave antenna with backfire-to-endfire scanning capability, Electron. Lett. 38(23), 1414 (2002)
https://doi.org/10.1049/el:20020977
12 L. Goldstone and A. Oliner, Leaky-wave antennas (I): Rectangular waveguides, IEEE Trans. Antenn. Propag. 7(4), 307 (2003)
https://doi.org/10.1109/TAP.1959.1144702
13 W. Hong, T. L. Chen, C. Y. Chang, J. W. Sheen, and Y. D. Lin, Broadband tapered microstrip leaky-wave antenna, IEEE Trans. Antenn. Propag. 51(8), 1922 (2003)
https://doi.org/10.1109/TAP.2003.814739
14 M. Wang, H. F. Ma, H. C. Zhang, W. X. Tang, X. R. Zhang, and T. J. Cui, Frequency-fixed beam-scanning leaky-wave antenna using electronically controllable corrugated microstrip line, IEEE Trans. Antenn. Propag. 66(9), 4449 (2018)
https://doi.org/10.1109/TAP.2018.2845452
15 M. Wang, H. F. Ma, W. X. Tang, H. C. Zhang, W. X. Jiang, and T. J. Cui, A dual-band electronic-scanning leaky-wave antenna based on a corrugated microstrip line, IEEE Trans. Antenn. Propag. 67(5), 3433 (2019)
https://doi.org/10.1109/TAP.2019.2902746
16 D. K. Karmokar, K. P. Esselle, and S. G. Hay, Fixedfrequency bBeam steering of microstrip leaky-wave Antennas using binary switches, IEEE Trans. Antenn. Propag. 64(6), 2146 (2016)
https://doi.org/10.1109/TAP.2016.2546949
17 R. Guzman-Quiros, J. L. Gomez-Tornero, A. R. Weily, and Y. J. Guo, Electronically steerable 1-D Fabry–Perot leaky-wave antenna employing a tunable high impedance surface, IEEE Trans. Antenn. Propag. 60(11), 5046 (2012)
https://doi.org/10.1109/TAP.2012.2208089
18 B. Lax and K. J. Button, Microwave Ferrites and Ferrimagnetics, New York, 1962
19 A. Hartstein, E. Burstein, A. A. Maradudin, R. Brewer, and R. F. Wallis, Surface polaritons on semi-infinite gyromagnetic media, J. Phys. C 6(7), 1266 (1973)
https://doi.org/10.1088/0022-3719/6/7/016
20 T. Kodera and C. Caloz, Integrated leaky-wave antenna– duplexer/diplexer using CRLH uniform ferrite-loaded open waveguide, IEEE Trans. Antenn. Propag. 58(8), 2508 (2010)
https://doi.org/10.1109/TAP.2010.2050449
21 T. Ueda and M. Tsutsumi, Left-handed transmission characteristics of rectangular waveguides periodically loaded with ferrite, IEEE Trans. Magn. 41(10), 3532 (2005)
https://doi.org/10.1109/TMAG.2005.854463
22 T. Ueda and M. Tsutsumi, Nonreciprocal left-handed transmission characteristics of microstriplines on ferrite substrate, IET Microw. Antennas Propag. 1(2), 349 (2007)
https://doi.org/10.1049/iet-map:20050006
23 Z. Y. Li, Nanophotonics in China: Overviews and highlights, Front. Phys. 7(6), 601 (2012)
https://doi.org/10.1007/s11467-012-0276-6
24 R. Wang, X. G. Ren, Z. Yan, L. J. Jiang, W. E. I. Sha, and G. C. Shan, Graphene based functional devices: A short review, Front. Phys. 14(1), 13603 (2019)
https://doi.org/10.1007/s11467-018-0859-y
25 A. B. Khanikaev and G. Shvets, Two-dimensional topological photonics, Nat. Photonics 11(12), 763 (2017)
https://doi.org/10.1038/s41566-017-0048-5
26 S. C. Zhang, Z. Fang, and Q. K. Xue, Advances in topological materials, Front. Phys. 7(2), 147 (2012)
https://doi.org/10.1007/s11467-011-0224-x
27 T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, and I. Carusotto, Topological photonics, Rev. Mod. Phys. 91(1), 015006 (2019)
https://doi.org/10.1103/RevModPhys.91.015006
28 T. Kodera and C. Caloz, Uniform ferrite-loaded open waveguide structure with CRLH response and its application to a novel backfire-to-endfire leaky-wave antenna, IEEE Trans. Microw. Theory Tech. 57(4), 784 (2009)
https://doi.org/10.1109/TMTT.2009.2015070
29 Q. Shen, L. F. Shen, W. D. Min, C. Wu, X. H. Deng, and S. S. Xiao, Trapping a magnetic rainbow by using a one-way magnetostatic-like mode, Opt. Mater. Express 9(11), 4399 (2019)
https://doi.org/10.1364/OME.9.004399
30 X. Deng, L. Hong, X. Zheng, and L. Shen, One-way regular electromagnetic mode immune to backscattering, Appl. Opt. 54(14), 4608 (2015)
https://doi.org/10.1364/AO.54.004608
31 Q. Shen, L. J. Hong, X. H. Deng, and L. F. Shen, Completely stopping microwaves with extremely enhanced magnetic fields, Sci. Rep. 8(1), 15811 (2018)
https://doi.org/10.1038/s41598-018-33956-0
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed