Stanene: A good platform for topological insulator and topological superconductor
Chen-Xiao Zhao (赵晨晓)1, Jin-Feng Jia (贾金锋)1,2,3()
1. Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China 2. Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China 3. CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
Two dimensional (2D) topological insulators (TIs) and topological superconductors (TSCs) have been intensively studied for recent years due to their great potential for dissipationless electron transportation and fault-tolerant quantum computing, respectively. Here we focus on stanene, the tin analogue of graphene, to give a brief review of their development as a candidate for both 2D TI and TSC. Stanene is proposed to be a TI with a large gap of 0.3 eV, and its topological properties are sensitive to various factors, e.g., the lattice constants, chemical functionalization and layer thickness, which offer various methods for phase tunning. Experimentally, the inverted gap and edge states are observed recently, which are strong evidences for TI. In addition, stanene is also predicted to be a time reversal invariant TSC by breaking inversion symmetry, supporting helical Majorana edge modes. The layer-dependent superconductivity of stanene is recently confirmed by both transport and scanning tunneling microscopy measurements. This review gives a detailed introduction to stanene and its topological properties and some prospects are also discussed.
M. König, S. Wiedmann, C. Brune, A. Roth, H. Buhmann, L. W. Molenkamp, X. L. Qi, and S. C. Zhang, Quantum spin Hall insulator state in HgTe quantum wells, Science 318(5851), 766 (2007) https://doi.org/10.1126/science.1148047
Y. Xu, B. Yan, H. J. Zhang, J. Wang, G. Xu, P. Tang, W. Duan, and S. C. Zhang, Large-gap quantum spin Hall insulators in thin films, Phys. Rev. Lett. 111(13), 136804 (2013) https://doi.org/10.1103/PhysRevLett.111.136804
7
Y. Xu, P. Tang, and S. C. Zhang, Large-gap quantum spin Hall states in decorated stanene grown on a substrate, Phys. Rev. B 92(8), 081112 (2015) https://doi.org/10.1103/PhysRevB.92.081112
8
D. Wang, L. Chen, X. Wang, G. Cui, and P. Zhang, The effect of substrate and external strain on electronic structures of stanene film, Phys. Chem. Chem. Phys. 17(40), 26979 (2015) https://doi.org/10.1039/C5CP04322K
9
Z. Ni, E. Minamitani, Y. Ando, and S. Watanabe, Germanene and stanene on two-dimensional substrates: Dirac cone and Z2 invariant, Phys. Rev. B 96(7), 075427 (2017) https://doi.org/10.1103/PhysRevB.96.075427
10
R. Zhang, W. Ji, C. Zhang, P. Li, and P. Wang, Prediction of flatness-driven quantum spin Hall effect in functionalized germanene and stanene, Phys. Chem. Chem. Phys. 18(40), 28134 (2016) https://doi.org/10.1039/C6CP06216D
11
B. H. Chou, Z. Q. Huang, C. H. Hsu, F. C. Chuang, Y. T. Liu, H. Lin, and A. Bansil, Hydrogenated ultra-thin tin films predicted as two-dimensional topological insulators, New J. Phys. 16(11), 115008 (2014) https://doi.org/10.1088/1367-2630/16/11/115008
12
Y. Zang, T. Jiang, Y. Gong, Z. Guan, C. Liu, M. Liao, K. Zhu, Z. Li, L. Wang, W. Li, C. Song, D. Zhang, Y. Xu, K. He, X. Ma, S. C. Zhang, and Q. K. Xue, Realizing an epitaxial decorated stanene with an insulating bandgap, Adv. Funct. Mater. 28(35), 1802723 (2018) https://doi.org/10.1002/adfm.201802723
13
C. Z. Xu, Y. H. Chan, P. Chen, X. Wang, D. Flötotto, J. A. Hlevyack, G. Bian, S. K. Mo, M. Y. Chou, and T. C. Chiang, Gapped electronic structure of epitaxial stanene on InSb(111), Phys. Rev. B 97(3), 035122 (2018) https://doi.org/10.1103/PhysRevB.97.035122
14
F. Zhu, W. Chen, Y. Xu, C. Gao, D. Guan, C. Liu, D. Qian, S. C. Zhang, and J. Jia, Epitaxial growth of twodimensional stanene, Nat. Mater. 14(10), 1020 (2015) https://doi.org/10.1038/nmat4384
15
C. Z. Xu, Y. H. Chan, Y. Chen, P. Chen, X. Wang, C. Dejoie, M. H. Wong, J. A. Hlevyack, H. Ryu, H. Y. Kee, N. Tamura, M. Y. Chou, Z. Hussain, S. K. Mo, and T. C. Chiang, Elemental topological Dirac semimetal: α-Sn on InSb(111), Phys. Rev. Lett. 118(14), 146402 (2017) https://doi.org/10.1103/PhysRevLett.118.146402
16
J. Deng, B. Xia, X. Ma, H. Chen, H. Shan, X. Zhai, B. Li, A. Zhao, Y. Xu, W. Duan, S. C. Zhang, B. Wang, and J. G. Hou, Epitaxial growth of ultraflat stanene with topological band inversion, Nat. Mater. 17(12), 1081 (2018) https://doi.org/10.1038/s41563-018-0203-5
17
X. Zheng, J.-F. Zhang, B. Tong, and R.-R. Du, Epitaxial growth and electronic properties of few-layer stanene on InSb(1 1 1), 2D Mater. 7, 011001 (2019) https://doi.org/10.1088/2053-1583/ab42b9
18
C. X. Zhao, J. Qin, B. Xia, B. Yang, H. Zheng, S. Y. Wang, C. H. liu, Y. Y. Li, D. D. Guan, and J. F. Jia, Combining quantum spin hall effect and superconductivity in few-layer stanene, arXiv: 2006.09834 (2020)
J. D. Sau, R. M. Lutchyn, S. Tewari, and S. Das Sarma, Generic new platform for topological quantum computation using semiconductor heterostructures, Phys. Rev. Lett. 104(4), 040502 (2010) https://doi.org/10.1103/PhysRevLett.104.040502
21
J. Alicea, Y. Oreg, G. Refael, F. von Oppen, and M. P. A. Fisher, Non-Abelian statistics and topological quantum information processing in 1D wire networks, Nat. Phys. 7(5), 412 (2011) https://doi.org/10.1038/nphys1915
22
X. L. Qi, T. L. Hughes, S. Raghu, and S. C. Zhang, Time-reversal-invariant topological superconductors and superfluids in two and three dimensions, Phys. Rev. Lett. 102(18), 187001 (2009) https://doi.org/10.1103/PhysRevLett.102.187001
23
J. Wang, Y. Xu, and S. C. Zhang, Two-dimensional time-reversal-invariant topological superconductivity in a doped quantum spin-Hall insulator, Phys. Rev. B 90(5), 054503 (2014) https://doi.org/10.1103/PhysRevB.90.054503
24
M. Liao, Y. Zang, Z. Guan, H. Li, Y. Gong, K. Zhu, X. P. Hu, D. Zhang, Y. Xu, Y. Y. Wang, K. He, X. C. Ma, S. C. Zhang, and Q. K. Xue, Superconductivity in few-layer stanene, Nat. Phys. 14(4), 344 (2018) https://doi.org/10.1038/s41567-017-0031-6
25
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004) https://doi.org/10.1126/science.1102896
26
J. Gou, L. Kong, H. Li, Q. Zhong, W. Li, P. Cheng, L. Chen, and K. Wu, Strain-induced band engineering in monolayer stanene on Sb(111), Phys. Rev. Mater. 1(5), 054004 (2017) https://doi.org/10.1103/PhysRevMaterials.1.054004
27
J. Gao, G. Zhang, and Y. W. Zhang, Exploring Ag(111) substrate for epitaxially growing monolayer stanene: A first-principles study, Sci. Rep. 6(1), 29107 (2016) https://doi.org/10.1038/srep29107
28
J. Yuhara, Y. Fujii, K. Nishino, N. Isobe, M. Nakatake, L. Xian, A. Rubio, and G. Le Lay, Large area planar stanene epitaxially grown on Ag(111), 2D Mater. 5, 025002 (2018) https://doi.org/10.1088/2053-1583/aa9ea0
29
Y. H. Song, Z. W. Wang, Z. Y. Jia, and X. Y. Zhu, Highbuckled R3 stanene with topologically nontrivial energy gap, arXiv: 1707.08657 (2017)
Y. Yao, F. Ye, X. L. Qi, S. C. Zhang, and Z. Fang, Spinorbit gap of graphene: First-principles calculations, Phys. Rev. B 75(4), 041401 (2007) https://doi.org/10.1103/PhysRevB.75.041401
32
B. A. Bernevig, T. L. Hughes, and S. C. Zhang, Quantum spin Hall effect and topological phase transition in HgTe quantum wells, Science 314(5806), 1757 (2006) https://doi.org/10.1126/science.1133734
33
A. Molle, J. Goldberger, M. Houssa, Y. Xu, S. C. Zhang, and D. Akinwande, Buckled two-dimensional Xene sheets, Nat. Mater. 16(2), 163 (2017) https://doi.org/10.1038/nmat4802
34
X. Qian, J. Liu, L. Fu, and J. Li, Quantum spin Hall effect in two-dimensional transition metal dichalcogenides, Science 346(6215), 1344 (2014) https://doi.org/10.1126/science.1256815
S. Liu, M. X. Wang, C. Chen, X. Xu, J. Jiang, L. X. Yang, H. F. Yang, Y. Y. Lv, J. Zhou, Y. B. Chen, S. H. Yao, M. H. Lu, Y. F. Chen, C. Felser, B. H. Yan, Z. K. Liu, and Y. L. Chen, Experimental observation of conductive edge states in weak topological insulator candidate HfTe5, APL Mater. 6(12), 121111 (2018) https://doi.org/10.1063/1.5050847
37
F. Reis, G. Li, L. Dudy, M. Bauernfeind, S. Glass, W. Hanke, R. Thomale, J. Schäfer, and R. Claessen, Bismuthene on a SiC substrate: A candidate for a high-temperature quantum spin Hall material, Science 357(6348), 287 (2017) https://doi.org/10.1126/science.aai8142
38
S. Tang, C. Zhang, D. Wong, Z. Pedramrazi, H. Z. Tsai, C. Jia, B. Moritz, M. Claassen, H. Ryu, S. Kahn, J. Jiang, H. Yan, M. Hashimoto, D. Lu, R. G. Moore, C. C. Hwang, C. Hwang, Z. Hussain, Y. Chen, M. M. Ugeda, Z. Liu, X. Xie, T. P. Devereaux, M. F. Crommie, S. K. Mo, and Z. X. Shen, Quantum spin Hall state in monolayer 1T′- WTe2, Nat. Phys. 13(7), 683 (2017) https://doi.org/10.1038/nphys4174
39
P. Chen, W. W. Pai, Y. H. Chan, W. L. Sun, C. Z. Xu, D. S. Lin, M. Y. Chou, A. V. Fedorov, and T. C. Chiang, Large quantum-spin-Hall gap in single-layer 1T′-WSe2, Nat. Commun. 9(1), 2003 (2018) https://doi.org/10.1038/s41467-018-04395-2
40
F. Zheng, C. Cai, S. Ge, X. Zhang, X. Liu, H. Lu, Y. Zhang, J. Qiu, T. Taniguchi, K. Watanabe, S. Jia, J. Qi, J. H. Chen, D. Sun, and J. Feng, On the quantum spin Hall gap of monolayer 1T′-WTe2, Adv. Mater. 28(24), 4845 (2016) https://doi.org/10.1002/adma.201600100
41
L. Peng, Y. Yuan, G. Li, X. Yang, J. J. Xian, C. J. Yi, Y. G. Shi, and Y. S. Fu, Observation of topological states residing at step edges of WTe2, Nat. Commun. 8(1), 659 (2017) https://doi.org/10.1038/s41467-017-00745-8
42
Z. Fei, T. Palomaki, S. Wu, W. Zhao, X. Cai, B. Sun, P. Nguyen, J. Finney, X. Xu, and D. H. Cobden, Edge conduction in monolayer WTe2, Nat. Phys. 13(7), 677 (2017) https://doi.org/10.1038/nphys4091
43
S. Wu, V. Fatemi, Q. D. Gibson, K. Watanabe, T. Taniguchi, R. J. Cava, and P. Jarillo-Herrero, Observation of the quantum spin Hall effect up to 100 kelvin in a monolayer crystal, Science 359(6371), 76 (2018) https://doi.org/10.1126/science.aan6003
44
A. Molle, J. Goldberger, M. Houssa, Y. Xu, S.C. Zhang, and D. Akinwande, Buckled two-dimensional Xene sheets, Nat. Mater. 16(2), 163 (2017) https://doi.org/10.1038/nmat4802
S. Groves, R. Brown, and C. Pidgeon, Interband magnetoreflection and band structure of HgTe, Phys. Rev. 161(3), 779 (1967) https://doi.org/10.1103/PhysRev.161.779
49
P. Tang, P. Chen, W. Cao, H. Huang, S. Cahangirov, L. Xian, Y. Xu, S. C. Zhang, W. Duan, and A. Rubio, Stable two-dimensional dumbbell stanene: A quantum spin Hall insulator, Phys. Rev. B 90(12), 121408 (2014) https://doi.org/10.1103/PhysRevB.90.121408
50
F. F. Yun, D. L. Cortie, and X. Wang, Tuning the electronic structure in stanene/graphene bilayers using strain and gas adsorption, Phys. Chem. Chem. Phys. 19(37), 25574 (2017) https://doi.org/10.1039/C7CP03678G
51
M. Maniraj, B. Stadtmüller, D. Jungkenn, M. Düvel, S. Emmerich, W. Shi, J. Stöckl, L. Lyu, J. Kollamana, Z. Wei, A. Jurenkow, S. Jakobs, B. Yan, S. Steil, M. Cinchetti, S. Mathias, and M. Aeschlimann, A case study for the formation of stanene on a metal surface, Commun. Phys. 2(1), 12 (2019) https://doi.org/10.1038/s42005-019-0111-2
52
Y. Liu, N. Gao, J. Zhuang, C. Liu, J. Wang, W. Hao, S. X. Dou, J. Zhao, and Y. Du, Realization of strained stanene by interface engineering, J. Phys. Chem. Lett. 10(7), 1558 (2019) https://doi.org/10.1021/acs.jpclett.9b00348
53
Y. Ding and Y. Wang, Quasi-free-standing features of stanene/stanane on InSe and GaTe nanosheets: A computational study, J. Phys. Chem. C 119(49), 27848 (2015) https://doi.org/10.1021/acs.jpcc.5b08946
54
R. W. Zhang, C. W. Zhang, W. X. Ji, S. S. Li, S. J. Hu, S. S. Yan, P. Li, P. J. Wang, and F. Li, Ethynylfunctionalized stanene film: A promising candidate as large-gap quantum spin Hall insulator, New J. Phys. 17(8), 083036 (2015) https://doi.org/10.1088/1367-2630/17/8/083036
55
R. Zhang, C. Zhang, W. Ji, S. Li, S. Yan, S. Hu, P. Li, P. Wang, and F. Li, Room temperature quantum spin Hall insulator in ethynyl-derivative functionalized stanene films, Sci. Rep. 6(1), 18879 (2016) https://doi.org/10.1038/srep18879
56
Y. Wang, W. Ji, C. Zhang, P. Li, F. Li, P. Wang, S. Li, and S. Yan, Large-gap quantum spin Hall state in functionalized dumbbell stanene, Appl. Phys. Lett. 108(7), 073104 (2016) https://doi.org/10.1063/1.4942380
57
M. Houssa, B. van den Broek, K. Iordanidou, A. K. A. Lu, G. Pourtois, J. P. Locquet, V. Afanas’ev, and A. Stesmans, Topological to trivial insulating phase transition in stanene, Nano Res. 9(3), 774 (2016) https://doi.org/10.1007/s12274-015-0956-y
58
Z. Liu, C. X. Liu, Y. S. Wu, W. H. Duan, F. Liu, and J. Wu, Stable nontrivial Z2 topology in ultrathin Bi(111) films: A first-principles study, Phys. Rev. Lett. 107(13), 136805 (2011) https://doi.org/10.1103/PhysRevLett.107.136805
59
T. Zhang, J. Ha, N. Levy, Y. Kuk, and J. Stroscio, Electric-field tuning of the surface band structure of topological insulator Sb2Te3 thin films, Phys. Rev. Lett. 111(5), 056803 (2013) https://doi.org/10.1103/PhysRevLett.111.056803
60
J. Liu, T. H. Hsieh, P. Wei, W. Duan, J. Moodera, and L. Fu, Spin-filtered edge states with an electrically tunable gap in a two-dimensional topological crystalline insulator, Nat. Mater. 13(2), 178 (2014) https://doi.org/10.1038/nmat3828
61
F. Qu, A. J. A. Beukman, S. Nadj-Perge, M. Wimmer, B. M. Nguyen, W. Yi, J. Thorp, M. Sokolich, A. A. Kiselev, M. J. Manfra, C. M. Marcus, and L. P. Kouwenhoven, Electric and magnetic tuning between the trivial and topological phases in InAs/GaSb double quantum wells, Phys. Rev. Lett. 115(3), 036803 (2015) https://doi.org/10.1103/PhysRevLett.115.036803
62
E. Sajadi, T. Palomaki, Z. Fei, W. Zhao, P. Bement, C. Olsen, S. Luescher, X. Xu, J. A. Folk, and D. H. Cobden, Gate-induced superconductivity in a monolayer topological insulator, Science 362(6417), 922 (2018) https://doi.org/10.1126/science.aar4426
63
V. Fatemi, S. Wu, Y. Cao, L. Bretheau, Q. D. Gibson, K. Watanabe, T. Taniguchi, R. J. Cava, and P. Jarillo-Herrero, Electrically tunable low-density superconductivity in a monolayer topological insulator, Science 362(6417), 926 (2018) https://doi.org/10.1126/science.aar4642
64
S. D. Sarma, M. Freedman, and C. Nayak, Majorana zero modes and topological quantum computation, npj Quantum Information 1(1), 15001 (2015) https://doi.org/10.1038/npjqi.2015.1
65
J. D. Sau, R. M. Lutchyn, S. Tewari, and S. D. Sarma, Generic new platform for topological quantum computation using semiconductor heterostructures, Phys. Rev. Lett. 104(4), 040502 (2010) https://doi.org/10.1103/PhysRevLett.104.040502
66
Y. Oreg, G. Refael, and F. von Oppen, Helical liquids and Majorana bound states in quantum wires, Phys. Rev. Lett. 105(17), 177002 (2010) https://doi.org/10.1103/PhysRevLett.105.177002
67
V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A. M. Bakkers, and L. P. Kouwenhoven, Signatures of Majorana fermions in hybrid superconductor–semiconductor nanowire devices, Science 336(6084), 1003 (2012) https://doi.org/10.1126/science.1222360
68
S. Nadj-Perge, I. K. Drozdov, J. Li, H. Chen, S. Jeon, J. Seo, A. H. MacDonald, B. A. Bernevig, and A. Yazdani, Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor, Science 346(6209), 602 (2014) https://doi.org/10.1126/science.1259327
69
S. Jeon, Y. Xie, J. Li, Z. Wang, B. A. Bernevig, and A. Yazdani, Distinguishing a Majorana zero mode using spin-resolved measurements, Science 358(6364), 772 (2017) https://doi.org/10.1126/science.aan3670
70
X. L. Qi, T. L. Hughes, and S. C. Zhang, Chiral topological superconductor from the quantum Hall state, Phys. Rev. B 82(18), 184516 (2010) https://doi.org/10.1103/PhysRevB.82.184516
71
Q. L. He, L. Pan, A. L. Stern, E. C. Burks, X. Che, G. Yin, J. Wang, B. Lian, Q. Zhou, E. S. Choi, K. Murata, X. Kou, Z. Chen, T. Nie, Q. Shao, Y. Fan, S. C. Zhang, K. Liu, J. Xia, and K. L. Wang, Chiral Majorana fermion modes in a quantum anomalous Hall insulatorsuperconductor structure, Science 357(6348), 294 (2017) https://doi.org/10.1126/science.aag2792
72
L. Fu and C. L. Kane, Superconducting proximity effect and Majorana fermions at the surface of a topological insulator, Phys. Rev. Lett. 100(9), 096407 (2008) https://doi.org/10.1103/PhysRevLett.100.096407
73
J. D. Sau, R. M. Lutchyn, S. Tewari, and S. Das Sarma, Robustness of Majorana fermions in proximity-induced superconductors, Phys. Rev. B 82(9), 094522 (2010) https://doi.org/10.1103/PhysRevB.82.094522
74
J. P. Xu, M. X. Wang, Z. L. Liu, J. F. Ge, X. Yang, C. Liu, Z. A. Xu, D. Guan, C. L. Gao, D. Qian, Y. Liu, Q. H. Wang, F. C. Zhang, Q. K. Xue, and J. F. Jia, Experimental detection of a Majorana mode in the core of a magnetic vortex inside a topological insulator–superconductor Bi2Te3/NbSe2 heterostructure, Phys. Rev. Lett. 114(1), 017001 (2015) https://doi.org/10.1103/PhysRevLett.114.017001
75
K. Bartkowski, A. Gladun, C. Gladun, J. Rafalowicz, and H. Vinzelberg, Thermal conductivity anisotropy of tin monocrystals in the temperature range 0.1 to 7 K, physica status solidi (a) 62, 207 (1980) https://doi.org/10.1002/pssa.2210620123
H. Jiang, Z. Qiao, H. Liu, and Q. Niu, Quantum anomalous Hall effect with tunable Chern number in magnetic topological insulator film, Phys. Rev. B 85(4), 045445 (2012) https://doi.org/10.1103/PhysRevB.85.045445
79
C. Z. Chang, J. Zhang, X. Feng, J. Shen, Z. Zhang, M. Guo, K. Li, Y. Ou, P. Wei, L. L. Wang, Z. Q. Ji, Y. Feng, S. Ji, X. Chen, J. Jia, X. Dai, Z. Fang, S. C. Zhang, K. He, Y. Wang, L. Lu, X. C. Ma, and Q. K. Xue, Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator, Science 340(6129), 167 (2013) https://doi.org/10.1126/science.1234414
80
R. Yu, W. Zhang, H. J. Zhang, S. C. Zhang, X. Dai, and Z. Fang, Quantized anomalous Hall effect in magnetic topological insulators, Science 329(5987), 61 (2010) https://doi.org/10.1126/science.1187485
81
H. Zhang, J. Zhang, B. Zhao, T. Zhou, and Z. Yang, Quantum anomalous Hall effect in stable dumbbell stanene, Appl. Phys. Lett. 108(8), 082104 (2016) https://doi.org/10.1063/1.4942193
82
S. C. Wu, G. Shan, and B. Yan, Prediction of near-roomtemperature quantum anomalous Hall effect on honeycomb materials, Phys. Rev. Lett. 113(25), 256401 (2014) https://doi.org/10.1103/PhysRevLett.113.256401
83
C. Z. Xu, Y. H. Chan, Y. Chen, P. Chen, X. Wang, C. Dejoie, M. H. Wong, J. A. Hlevyack, H. Ryu, H. Y. Kee, N. Tamura, M. Y. Chou, Z. Hussain, S. K. Mo, and T. C. Chiang, Elemental topological Dirac semimetal: α-Sn on InSb(111), Phys. Rev. Lett. 118(14), 146402 (2017) https://doi.org/10.1103/PhysRevLett.118.146402
84
Z. Y. Wang, J. O. Rodriguez, M. Graham, and G. D. Gu, Signature of dispersing 1D Majorana channels in an iron-based superconductor, arXiv: 1903.00515 (2019)