1. School of Physics and Optoelectronic Engineering, Xidian University, Xi’an 710071, China 2. College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China 3. College of Physics and Optoelectronic Technology, Baoji University of Arts and Sciences, Baoji 721016, China 4. School of Information, Guizhou University of Finance and Economics, Guiyang 550025, China
Based on structure prediction method, the machine learning method is used instead of the density functional theory (DFT) method to predict the material properties, thereby accelerating the material search process. In this paper, we established a data set of carbon materials by high-throughput calculation with available carbon structures obtained from the Samara Carbon Allotrope Database. We then trained a machine learning (ML) model that specifically predicts the elastic modulus (bulk modulus, shear modulus, and the Young’s modulus) and confirmed that the accuracy is better than that of AFLOW–ML in predicting the elastic modulus of a carbon allotrope. We further combined our ML model with the CALYPSO code to search for new carbon structures with a high Young’s modulus. A new carbon allotrope not included in the Samara Carbon Allotrope Database, named Cmcm–C24, which exhibits a hardness greater than 80 GPa, was firstly revealed. The Cmcm–C24 phase was identified as a semiconductor with a direct bandgap. The structural stability, elastic modulus, and electronic properties of the new carbon allotrope were systematically studied, and the obtained results demonstrate the feasibility of ML methods accelerating the material search process.
V. L. Deringer, G. Csányi, and D. M. Proserpio, Extracting crystal chemistry from amorphous carbon structures, ChemPhysChem 18(8), 873 (2017) https://doi.org/10.1002/cphc.201700151
2
Y. Zhuo, A. Mansouri Tehrani, and J. Brgoch, Predicting the band gaps of inorganic solids by machine learning, J. Phys. Chem. Lett. 9(7), 1668 (2018) https://doi.org/10.1021/acs.jpclett.8b00124
3
J. Lee, A. Seko, K. Shitara, K. Nakayama, and I. Tanaka, Prediction model of band gap for inorganic compounds by combination of density functional theory calculations and machine learning techniques, Phys. Rev. B 93(11), 115104 (2016) https://doi.org/10.1103/PhysRevB.93.115104
4
P. Dey, J. Bible, S. Datta, S. Broderick, J. Jasinski, M. Sunkara, M. Menon, and K. Rajan, Informatics-aided bandgap engineering for solar materials, Comput. Mater. Sci. 83, 185 (2014) https://doi.org/10.1016/j.commatsci.2013.10.016
5
A. O. Oliynyk, L. A. Adutwum, B. W. Rudyk, H. Pisavadia, S. Lotfi, V. Hlukhyy, J. J. Harynuk, A. Mar, and J. Brgoch, Disentangling structural confusion through machine learning: Structure prediction and polymorphism of equiatomic ternary phases ABC, J. Am. Chem. Soc. 139(49), 17870 (2017) https://doi.org/10.1021/jacs.7b08460
6
A. O. Oliynyk, L. A. Adutwum, J. J. Harynuk, and A. Mar, Classifying crystal structures of binary compounds AB through cluster resolution feature selection and support vector machine analysis, Chem. Mater. 28(18), 6672 (2016) https://doi.org/10.1021/acs.chemmater.6b02905
7
F. Legrain, J. Carrete, A. van Roekeghem, S. Curtarolo, and N. Mingo, How the chemical composition alone can predict vibrational free energies and entropies of solids, Chem. Mater. 29(15), 6220 (2017) https://doi.org/10.1021/acs.chemmater.7b00789
8
G. Pilania, P. V. Balachandran, C. Kim, and T. Lookman, Finding new perovskite halides via machine learning, Front. Mater. 3, 19 (2016) https://doi.org/10.3389/fmats.2016.00019
9
O. Isayev, C. Oses, C. Toher, E. Gossett, S. Curtarolo, and A. Tropsha, Universal fragment descriptors for predicting properties of inorganic crystals, Nat. Commun. 8(1), 15679 (2017) https://doi.org/10.1038/ncomms15679
10
Y. Zhang and C. Ling, A strategy to apply machine learning to small datasets in materials science, npj Comput. Mater. 4, 25 (2018) https://doi.org/10.1038/s41524-018-0081-z
11
A. Mansouri Tehrani, A. O. Oliynyk, M. Parry, Z. Rizvi, S. Couper, F. Lin, L. Miyagi, T. D. Sparks, and J. Brgoch, Machine learning directed search for ultraincompressible, superhard materials, J. Am. Chem. Soc. 140(31), 9844 (2018) https://doi.org/10.1021/jacs.8b02717
12
Y. W. Zhang, H. Wang, Y. C. Wang, L. J. Zhang, and Y. M. Ma, Computer-assisted inverse design of inorganic electrides, Phys. Rev. X 7(1), 011017 (2017) https://doi.org/10.1103/PhysRevX.7.011017
13
X. X. Zhang, Y. C. Wang, J. Lv, C. Y. Zhu, Q. Li, M. Zhang, Q. Li, and Y. M. Ma, First-principles structural design of superhard materials, J. Chem. Phys. 138(11), 114101 (2013) https://doi.org/10.1063/1.4794424
14
Y. C. Wang, J. Lv, L. Zhu, and Y. M. Ma, CALYPSO: A method for crystal structure prediction, Comput. Phys. Commun. 183(10), 2063 (2012) https://doi.org/10.1016/j.cpc.2012.05.008
15
Y. Sun, J. Lv, Y. Xie, H. Y. Liu, and Y. M. Ma, Route to a superconducting phase above room temperature in electron-doped hydride compounds under high pressure, Phys. Rev. Lett. 123(9), 097001 (2019) https://doi.org/10.1103/PhysRevLett.123.097001
16
Q. Wei, Q. Zhang, M. Zhang, H. Yan, L. Guo, and B. Wei, A novel hybrid sp-sp2 metallic carbon allorope, Front. Phys. 13(5), 136105 (2018) https://doi.org/10.1007/s11467-018-0787-x
17
H. Yan, Z. Wei, M. Zhang, and Q. Wei, Exploration of stable stoichiometries, ground-state structures, and mechanical properties of the W–Si system, Ceram. Int. 46(10), 17034 (2020) https://doi.org/10.1016/j.ceramint.2020.03.290
18
J. Lin, Z. Y. Zhao, C. Y. Liu, J. Zhang, X. Du, G. C. Yang, and Y. M. Ma, IrF8 molecular crystal under high pressure, J. Am. Chem. Soc. 141(13), 5409 (2019) https://doi.org/10.1021/jacs.9b00069
19
Z. Y. Zhao, S. T. Zhang, T. Yu, H. Y. Xu, A. Bergara, and G. C. Yang, Predicted pressure-induced superconducting transition in electride Li6P, Phys. Rev. Lett. 122(9), 097002 (2019) https://doi.org/10.1103/PhysRevLett.122.097002
20
Q. Wei, W. Tong, R. K. Yang, H. Y. Yan, B. Wei, M. G. Zhang, X. C. Yang, and R. Zhang, Orthorhombic C10: A new superdense carbon allotrope, Phys. Lett. A 383(28), 125861 (2019) https://doi.org/10.1016/j.physleta.2019.125861
21
Q. C. Tong, L. T. Xue, J. Lv, Y. C. Wang, and Y. M. Ma, Accelerating CALYPSO structure prediction by data-driven learning of a potential energy surface, Faraday Discuss. 211, 31 (2018) https://doi.org/10.1039/C8FD00055G
22
K. Xia, H. Gao, C. Liu, J. N. Yuan, J. Sun, H. T. Wang, and D. Y. Xing, A novel superhard tungsten nitride predicted by machine-learning accelerated crystal structure search, Sci. Bull. (Beijing)63(13), 817 (2018) https://doi.org/10.1016/j.scib.2018.05.027
23
R. Hoffmann, A. A. Kabanov, A. A. Golov, and D. M. Proserpio, Homo Citans and carbon allotropes: For an ethics of citation, Angew. Chem. Int. Ed. 55(37), 10962 (2016) https://doi.org/10.1002/anie.201600655
24
M. Gajdoš, K. Hummer, G. Kresse, J. Furthmuller, and F. Bechstedt, Linear optical properties in the projectoraugmented wave methodology, Phys. Rev. B 73(4), 045112 (2006) https://doi.org/10.1103/PhysRevB.73.045112
25
G. Kresse and J. Furthmuller, Efficient iterative schemes for ab initiototal-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996) https://doi.org/10.1103/PhysRevB.54.11169
26
M. G. Zhang, H. Y. Yan, and Q. Wei, Unexpected ground-state crystal structures and mechanical properties of transition metal pernitrides MN2 (M= Ti, Zr, and Hf), J. Alloys Compd. 774, 918 (2019) https://doi.org/10.1016/j.jallcom.2018.09.337
27
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 78(7), 1396 (1997) [Phys. Rev. Lett. 77, 3865 (1996)] https://doi.org/10.1103/PhysRevLett.78.1396
A. Togo, F. Oba, and I. Tanaka, First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures, Phys. Rev. B 78(13), 134106 (2008) https://doi.org/10.1103/PhysRevB.78.134106
30
L. Ward, A. Dunn, A. Faghaninia, N. E. R. Zimmermann, S. Bajaj, Q. Wang, J. Montoya, J. Chen, K. Bystrom, M. Dylla, K. Chard, M. Asta, K. A. Persson, G. J. Snyder, I. Foster, and A. Jain, Matminer: An open source toolkit for materials data mining, Comput. Mater. Sci. 152, 60 (2018) https://doi.org/10.1016/j.commatsci.2018.05.018
31
E. Gossett, C. Toher, C. Oses, O. Isayev, F. Legrain, F. Rose, E. Zurek, J. Carrete, N. Mingo, A. Tropsha, and S. Curtarolo, AFLOW-ML: A RESTful API for machine-learning predictions of materials properties, Comput. Mater. Sci. 152, 134 (2018) https://doi.org/10.1016/j.commatsci.2018.03.075
32
A. R. Supka, T. E. Lyons, L. Liyanage, P. D’Amico, R. Al Rahal Al Orabi, S. Mahatara, P. Gopal, C. Toher, D. Ceresoli, A. Calzolari, S. Curtarolo, M. B. Nardelli, and M. Fornari, AFLOW: A minimalist approach to highthroughput ab initio calculations including the generation of tight-binding hamiltonians, Comput. Mater. Sci. 136, 76 (2017) https://doi.org/10.1016/j.commatsci.2017.03.055
33
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. Hart, and S. Curtarolo, The AFLOW library of crystallographic prototypes(Part 1), Comput. Mater. Sci. 136, S1 (2017) https://doi.org/10.1016/j.commatsci.2017.01.017
34
W. L. Mao, H. K. Mao, P. J. Eng, T. P. Trainor, M. Newville, et al., Bonding changes in compressed superhard graphite, Science 302(5644), 425 (2003) https://doi.org/10.1126/science.1089713
35
Y. J. Wang, J. E. Panzik, B. Kiefer, and K. K. M. Lee, Crystal structure of graphite under room-temperature compression and decompression, Sci. Rep. 2(1), 520 (2012) https://doi.org/10.1038/srep00520
36
Q. Li, Y. M. Ma, A. R. Oganov, H. B. Wang, H. Wang, Y. Xu, T. Cui, H. K. Mao, and G. G. Zou, Superhard monoclinic polymorph of carbon, Phys. Rev. Lett. 102(17), 175506 (2009) https://doi.org/10.1103/PhysRevLett.102.175506
37
E. Stavrou, S. Lobanov, H. F. Dong, A. R. Oganov, V. B. Prakapenka, Z. Konopkovaa, A. F. Goncharov, Synthesis of ultra-incompressible sp3-hybridized carbon nitride with 1:1 stoichiometry, Chem. Mater. 28(19), 6925 (2016) https://doi.org/10.1021/acs.chemmater.6b02593
38
M. Zhang, H. Liu, Q. Li, B. Gao, Y. C. Wang, H. D. Li, C. F. Chen, and Y. M. Ma, Superhard BC3 in cubic diamond structure, Phys. Rev. Lett. 114(1), 015502 (2015) https://doi.org/10.1103/PhysRevLett.114.015502
A. Lyakhov and A. Oganov, Evolutionary search for superhard materials: Methodology and applications to forms of carbon and TiO2, Phys. Rev. B 84(9), 092103 (2011) https://doi.org/10.1103/PhysRevB.84.092103